
miniutils Documentation
Release 1.0.1

scnerd

Oct 22, 2020

Contents:

1 Progress Bars 3
1.1 progbar . 3
1.2 parallel_progbar . 4
1.3 iparallel_progbar . 5

2 Property Cache 7
2.1 Basic Property . 7
2.2 Indexed Property . 9
2.3 File-backed Function Cache . 10

3 Nesting Python 2 13

4 Miscellaneous 17
4.1 Code Contracts . 17
4.2 Simplifying Decorators . 18
4.3 Logging Made Easy . 19
4.4 Timing . 20

5 API 23
5.1 Caching . 23
5.2 Progress Bar . 24
5.3 Python 2 . 25
5.4 Pragma . 26
5.5 Miscellaneous . 26

6 Overview 29

7 Installation 31

8 Examples 33

9 Indices and tables 35

Index 37

i

ii

miniutils Documentation, Release 1.0.1

Contents: 1

https://coveralls.io/github/scnerd/miniutils?branch=master
https://travis-ci.org/scnerd/miniutils
http://miniutils.readthedocs.io/en/latest/?badge=latest

miniutils Documentation, Release 1.0.1

2 Contents:

CHAPTER 1

Progress Bars

Three progress bar utilities are provided, all leveraging the excellent tqdm library.

1.1 progbar

A simple iterable wrapper, much like the default tqdm wrapper. It can be used on any iterable to display a progress
bar as it gets iterated:

for x in progbar(my_list):
do_something_slow(x)

However, unlike the standard tqdm function, this code has two additional, useful behaviors: first, it automatically
leverages the ipywidgets progress bar when run inside a jupyter notebook; second, if given an integer, it auto-
matically creates range(n) to iterate on. Both of these features are available in the tqdm library, but as separate
functions. progbar wraps them all into a single intuitive call. It even includes a verbose flag that can be disabled
to eliminate the progress bar based on runtime variables, if so desired.

miniutils.progress_bar.progbar(iterable, *a, verbose=True, **kw)
Prints a progress bar as the iterable is iterated over

Parameters

• iterable – The iterator to iterate over

• a – Arguments to get passed to tqdm (or tqdm_notebook, if in a Jupyter notebook)

• verbose – Whether or not to print the progress bar at all

• kw – Keyword arguments to get passed to tqdm

Returns The iterable that will report a progress bar

3

https://pypi.python.org/pypi/tqdm

miniutils Documentation, Release 1.0.1

1.2 parallel_progbar

A parallel mapper based on multiprocessing that replaces Pool.map. In attempting to use Pool.map, I’ve
had issues with unintuitive errors and, of course, wanting a progress bar of my map job’s progress. Both of these are
solved in parallel_progbar:

results = parallel_progbar(do_something_slow, my_list)
Equivalent to a parallel version of [do_something_slow(x) for x in my_list]

This produces a pool of processes, and performs a map function in parallel on the items of the provided list.

Starmap behavior:

results = parallel_progbar(do_something_slow, my_list, starmap=True)
[do_something_slow(*x) for x in my_list]

And/or flatmap behavior:

results = parallel_progbar(make_more_things, my_things, flatmap=True)
Equivalent to a parallel version of [y for x in my_things for y in make_more_
→˓things(x)]

It also supports runtime disabling, limited number of parallel processes, shuffling before mapping (in case the order
of your list puts, say, a few slowest items near the end), and even an optional second progress bar when performing a
flatmap. This second bar just reports the number of items output (y in the case above), while the main progress bar
counts down the number of finished inputs (x).

miniutils.progress_bar.parallel_progbar(*args, **kwargs)
Performs a parallel mapping of the given iterable, reporting a progress bar as values get returned

Parameters

• mapper – The mapping function to apply to elements of the iterable

• iterable – The iterable to map

• nprocs – The number of processes (defaults to the number of cpu’s)

• starmap – If true, the iterable is expected to contain tuples and the mapper function gets
each element of a tuple as an argument

• flatmap – If true, flatten out the returned values if the mapper function returns a list of
objects

• shuffle – If true, randomly sort the elements before processing them. This might help
provide more uniform runtimes if processing different objects takes different amounts of
time.

• verbose – Whether or not to print the progress bar

• verbose_flatmap – If performing a flatmap, whether or not to report each object as it’s
returned

• timeout – The number of seconds to wait for each worker process after completing

• kwargs – Any other keyword arguments to pass to the progress bar (see progbar)

Returns A list of the returned objects, in the same order as provided

4 Chapter 1. Progress Bars

miniutils Documentation, Release 1.0.1

1.3 iparallel_progbar

This has the exact same behavior as parallel_progbar, but produces an unordered generator instead of a list,
yielding results as soon as they’re available. It also permits a max_cache argument that allows you to limit the
number of computed results available to the generator.

for result in iparallel_progbar(do_something_slow, my_list):
print("Result {} done!".format(result))

miniutils.progress_bar.iparallel_progbar(*args, **kwargs)
Performs a parallel mapping of the given iterable, reporting a progress bar as values get returned. Yields objects
as soon as they’re computed, but does not guarantee that they’ll be in the correct order.

Parameters

• mapper – The mapping function to apply to elements of the iterable

• iterable – The iterable to map

• nprocs – The number of processes (defaults to the number of cpu’s)

• starmap – If true, the iterable is expected to contain tuples and the mapper function gets
each element of a tuple as an argument

• flatmap – If true, flatten out the returned values if the mapper function returns a list of
objects

• shuffle – If true, randomly sort the elements before processing them. This might help
provide more uniform runtimes if processing different objects takes different amounts of
time.

• verbose – Whether or not to print the progress bar

• verbose_flatmap – If performing a flatmap, whether or not to report each object as it’s
returned

• max_cache – Maximum number of mapped objects to permit in the queue at once

• timeout – The number of seconds to wait for each worker process after completing

• kwargs – Any other keyword arguments to pass to the progress bar (see progbar)

Returns A list of the returned objects, in whatever order they’re done being computed

1.3. iparallel_progbar 5

miniutils Documentation, Release 1.0.1

6 Chapter 1. Progress Bars

CHAPTER 2

Property Cache

2.1 Basic Property

In some cases, an object has properties that don’t need to be computed until necessary, and once computed are generally
static and could just be cached. This could be accomplished using the following simple recipe:

class Obj:
def __init__(self):

self._attribute = None
...

@property
def attribute(self):

if self._attribute is None:
self._attribute = some_slow_computation(self)

return self._attribute

If you want to support re-computation (besides just setting the object to None again), it’s not hard to add:

class Obj:
def __init__(self):

self._attribute = None
self._need_attribute = True
...

@property
def attribute(self):

if self._need_attribute:
self._attribute = some_slow_computation(self)
self._need_attribute = False

return self._attribute

...
attr1 = my_obj.attribute

(continues on next page)

7

miniutils Documentation, Release 1.0.1

(continued from previous page)

my_obj._need_attribute = True
attr2 = my_obj.attribute # Re-computes attribute

Adding inter-dependence between such properties is not hard, but quickly becomes verbose. In fact, all of this code is
verbose relative to the simple goal: for some property x, define its value, but don’t actually compute it until necessary,
and allow the code to make it “necessary” again. This is easy to describe, and easy to think of, but just convoluted to
code (but fortunately, easy to template).

To simplify this process, miniutils provides a CachedProperty decorator that’s simple by default, and moder-
ately powerful when necessary. Let’s take a look at a simple use case first, then we’ll examine its capabilities:

class Obj:
@CachedProperty()
def attribute(self):

return some_slow_computation(self)

That’s all you need. No need to initialize, set up flags, or anything. It’s all handled automatically. A use case like
above might look like:

attr1 = my_object.attribute # Computed the first time
attr2 = my_object.attribute # Loaded from cache
assert attr1 is attr2
del my_object.attribute # Deletes the cached object and marks for re-computation
attr3 = my_object.attribute # Re-computes the value

Despite being simple to use, it’s still a fairly powerful decorator:

• Like @property, this method is converted to a property (in fact, the property function is used under the
hood, so you don’t have any CachedProperty objects floating around)

• The result is lazy-computed, just like you’d expect from a property

• The result is cached and returned instantly if not marked for re-computation (note that the object doesn’t have
to be hashable since there’s no lookup being performed)

• Its computation can affect the computation of other properties, and thus automatically mark those properties for
re-computation when needed (i.e., it maintains a dependency chain amongst CachedProperties)

• A simple setter can be automatically defined which invalidates downstream properties without needing more
code (note that, at this time, you can’t safely define a custom setter, you can either use the default or let the
property be unsettable)

• If the property returns a basic iterable (list, dictionary, set), it’s wrapped so that modifications to its content (if
permitted) invalidate downstream properties.

A key feature not yet demonstrated is the ability to add dependencies amongst properties. Essentially, this defines a
directed graph where resetting, re-computing, or altering upstream properties marks all dependent downstream prop-
erties for re-computation. This can be seen in the following demonstration:

class Printer:
@CachedProperty('b', settable=True)
def a(self):

print("Running a")
return 5

@CachedProperty('c', is_collection=True)
def b(self):

print("Running b")

(continues on next page)

8 Chapter 2. Property Cache

miniutils Documentation, Release 1.0.1

(continued from previous page)

return [self.a] * 100

@CachedProperty('d')
def c(self):

print("Running c")
return sum(self.b)

@CachedProperty()
def d(self):

print("Running d")
return str(self.c ** 2)

p = Printer()
p.a # Computes A
p.c # Computes C, during which it computes B
p.a = 3 # Sets A, invalidating B and C (and D, if it weren't already invalid)
p.c # Computes C, and thus B, again
p.c # Returns the cached value for C
p.b[0] = 0 # Alters a value within B (not B itself), which correctly invalidates C
p.c # Computes C, using cached B
del p.a # Invalidates A, and therefore B and C
p.d # Computes D, and thus C, B, and A

This isn’t the complete feature set of the decorator, but it’s a good initial taste of what can be accomplished using it.

class miniutils.caching.CachedProperty(*affects, settable=False, thread-
safe=True, is_collection=False, al-
low_collection_mutation=True)

Marks this property to be cached. Delete this property to remove the cached value and force it to be rerun.

Parameters

• affects – Strings that list the names of the other properties in this class that are directly
invalidated when this property’s value is altered

• settable – Whether or not to allow this property to have values assigned directly to it

• threadsafe – Whether or not to restrict execution of this property’s code to a single
thread at a time (safe for recursive calls)

• is_collection – Whether or not this property returns a collection (currently supports
lists, sets, and dictionaries; others might not work exactly as expected)

• allow_collection_mutation – Whether or not the returned collection should allow
its values to be altered

2.2 Indexed Property

Even using the above tools, it is non-concise to allow indexing into a property where values are lazily computed.

The LazyDictionary decorator allows you to write a __getitem__ style property that can be used like a
dictionary and has its results cached:

class Primes:
@LazyDictionary()
def is_prime(self, i):

if not isinstance(i, int) or i < 1:

(continues on next page)

2.2. Indexed Property 9

miniutils Documentation, Release 1.0.1

(continued from previous page)

raise ValueError("Can only check if a positive integer is prime")
elif i in [1, 2]:

return True
elif i % 2 == 0:

return False
else:

return all(i % p != 0 for p in range(3, int(math.sqrt(i)) + 1, 2) if self.
→˓is_prime[p])

p = Primes()
p.is_prime[5] # True, caches the fact that 1, 2, and 3 are prime
p.is_prime[500] # False, caches all primes up to sqrt(500)
p.is_prime[501] # False, virtually instant since it uses the cached primes used to
→˓compute is_prime[500]

The indexing notation is used and preferred to make clear that this decorator only aims to support one hashable
argument, and is meant to behave like a dictionary or list. It is not iterable, since the result of that would depend on
whatever prior code happened to be executed. Instead, you should iterate through all desired keys, and simply index
them; that way, any that need to be re-computed are, and those that can are loaded from cache.

This plugs cleanly into CachedProperty, accepting a list of properties whose values are invalidated when this
dictionary is modified. It also supports allowing or disallowing explicit assignment to certain indices:

p = Primes()
p.is_prime[3] = False
p.is_prime[9] # This is now True, since there is no lesser known prime

This is meant to provide a slight additional feature to having a cached dictionary, though honestly it’s probably a very
small improvement over self.is_prime = defaultdict(self._is_prime), since it has the additions of
invalidating cached properties and making values dependant on their indices.

Values can be explicitly assigned to indices (if allow_collection_mutation=True); assigned values
override cached values. Raised KeyError``s are cached to prevent re-running indices
where failure is known. If an error is not due solely to the index, raise
some other error to allow that index to be retried later if some variation
to the program's state might allow it to succeed. ``.get(key, default) and .
update(dict) are also provided to offer a more dictionary-like interface. A particular object instance will have a
miniutils.caching._LazyDictionary instance which provides its caching, though the decorated function
is once again replaced with a simple @property.

class miniutils.caching.LazyDictionary(*affects, allow_collection_mutation=False)
Marks this indexable property to be a cached dictionary. Delete this property to remove the cached value and
force it to be rerun.

Parameters

• affects – Strings that list the names of the other properties in this class that are directly
invalidated when this property’s value is altered

• allow_collection_mutation – Whether or not the returned collection should allow
its values to be altered

2.3 File-backed Function Cache

As a file-based alternative to simple function caching (such as that provided by functools.lru_cache),
miniutils.caching.FileCached provides caching of a function’s results using shelve as its storage back-

10 Chapter 2. Property Cache

miniutils Documentation, Release 1.0.1

end. This is primarily intended for long-run file processing scripts, and as such it natively supports invalidating cache
items if relied-upon files are modified since when the cache entry was created.

There are several ways to use this cache. The simplest is to use it as a decorator, leveraging miniutils.caching.
file_cached_decorator(). The following example stores the results of load_data in a cache at ./
preprocessed, which gets automatically invalidated when /path/to/data.csv gets modified:

@file_cached_decorator('./preprocessed', files_used=['/path/to/data.csv'])
def load_data():

df = pandas.read_csv('/path/to/data.csv')
Modify, clean, process data
return df

This could also be accomplished on a function not defined in the user code, using miniutils.caching.
FileCached directly:

data = FileCached(load_data, './preprocessed', files_used=['/path/to/data.csv'])

By offloading the generation of the cache to the caller code, it’s also possible to dynamically provide the list of files
being used when they are arguments to the function:

def load_data(path):
df = pandas.read_csv(path)
...

data = FileCached(load_data, './preprocessed', files_used=[data_path])(data_path)

This use of miniutils.caching.FileCached is how it is meant to be used when attempting to store function
results across multiple runs of a script. Each time the script is run, it will connect to the same persistent on-disk cache,
update if function arguments or relied-upon files change, and synchronize any new function results back to disk before
the program exits.

By default, miniutils.caching.FileCached and its decorator form generate a cache filepath based on the
function’s name if no explicit name is set. It is recommended not to use this default name if you wish to use the cache
between runs of Python, since any change to the function’s name will invalidate the cache; also, this breaks if you
wish to cache multiple functions with the same name.

Warning: Note that shelve, and therefore miniutils.caching.FileCached, is not thread-safe or
multiprocess-safe, so this cache will likely fail if being used in any parallel fashion. To use a data store in a parallel
fashion, you should probably rely on a robust database system of some sort, such as MongoDB.

Warning: When purging a file cache, miniutils.caching.FileCached deletes all files matching its
database’s filepath. Make sure that the file path given for the cache has no relation to any other code or data files
used by your program.

class miniutils.caching.FileCached(fn, cache_path=None, files_used=None,
auto_purge=False)

Caches function results to a file to save re-computation of highly expensive calls

Parameters

• fn (function) – The functions whose result should be cached

• cache_path (str) – No-extension file path where cache should be kept

2.3. File-backed Function Cache 11

miniutils Documentation, Release 1.0.1

• files_used (Iterable) – List of files that could effect the result of this function; cache
results are invalidated if any of these files are updated since the last function call

• auto_purge – If True, deletes the file cache when this cache object passes out of scope

Type auto_purge: bool

cache_clear(create_new_shelf=True)
Deletes the underlying cache

cache_info()
Gets information about this cache.

Returns A named tuple containing the number of cache hits and misses

miniutils.caching.file_cached_decorator(*args, **kwargs)
A decorator version of FileCached

Parameters

• cache_path (str) – No-extension file path where cache should be kept

• files_used (Iterable) – List of files that could effect the result of this function; cache
results are invalidated if any of these files are updated since the last function call

• auto_purge – If True, deletes the file cache when this cache object passes out of scope

Type auto_purge: bool

Returns A decorator for a function

Return type function

12 Chapter 2. Property Cache

CHAPTER 3

Nesting Python 2

In very rare situations, the standard means of Python2 compatibility within Python3 (such as six, 2to3, or
__futures__) might simply be insufficient. Sometimes, you just need to run Python2 wholesale to get the cor-
rect behavior.

This is not generally advised at all. I built this out of necessity, where identical function calls to a built-
in Python package worked in Python2 and broke in Python3, and I could see no other way to solve the
problem. Please exhaust all other options before deciding to use this hack.

In the vein of making complex modules in support of simple code, I wrapped the entire behavior into a function
decorator. Define the function you want to run in Python2, decorate it, then just run it like you normally would. Voila,
it’s executed in a Python2 subprocess.

This works essentially using code templating. A Python2 instance is kicked off as a subprocess; it loads the parameters
needed to run the function (as given to the decorator); finally, it sits in an infinite loop receiving arguments as pickles,
running them through the function, and returning the results as pickles. It’s designed to run self-contained functions,
with some support for wrapping functions defined in external modules (though generally, in this case, I’d recommend
writing a simple self-contained function that loads that module and runs the function).

Let’s take a look at a minimal example:

@MakePython2()
def get_version():

import sys
return sys.version_info[0]

get_version() # Reports that we're in Python 2

import sys
sys.version_info[0] # Reports that we're in Python 3

Of course, not every function is self-contained like this. To handle the majority of easy cases, the MakePython2
decorator supports pre-defining a set of imports and global variables.

Imports are given as a list of items, each of which should be either a simple string:

13

miniutils Documentation, Release 1.0.1

@MakePython2(imports=['sys'])
def get_version():

return sys.version_info[0]

or as a tuple of (package, name):

@MakePython2(imports=[('sys', 'another_name')])
def get_version():

return another_name.version_info[0]

Global variables (if they can be pickled using protocol 2, the highest protocol for Python2) can be given as a dictionary
of dict(name=value,...):

@MakePython2(global_values={'x': 5})
def add(y):

return x + y

Additional features include changing the Python2 executable path, specifying that the function code shouldn’t be
copied to the Python2 instance (e.g., if you’re just running a single function from an external module), and specifying
the function to execute by name instead of by passing the function directly.

For example, to execute an external function, you can use the class as a wrapper instead of using the decorator notation:

uname = MakePython2('os.uname', imports=['os'], copy_function_body=False).function

class miniutils.py2_wrap.MakePython2(func=None, *, imports=None, global_values=None,
copy_function_body=True, python2_path=’python2’)

Make a function execute within a Python 2 instance

Parameters

• func – The function to wrap. If not specified, this class instance behaves like a decorator

• imports – Any import statements the function requires. Should be a list, where each
element is either a string (e.g., 'sys' for import sys) or a tuple (e.g., ('os.path',
'path') for import os.path as pas)

• global_values – A dictionary of global variables the function relies on. Key must be
strings, and values must be picklable

• copy_function_body – Whether or not to copy the function’s source code into the
Python 2 instance

• python2_path – The path to the Python 2 executable to use

__init__(func=None, *, imports=None, global_values=None, copy_function_body=True,
python2_path=’python2’)

Make a function execute within a Python 2 instance

Parameters

• func – The function to wrap. If not specified, this class instance behaves like a decorator

• imports – Any import statements the function requires. Should be a list, where each
element is either a string (e.g., 'sys' for import sys) or a tuple (e.g., ('os.path',
'path') for import os.path as pas)

• global_values – A dictionary of global variables the function relies on. Key must be
strings, and values must be picklable

• copy_function_body – Whether or not to copy the function’s source code into the
Python 2 instance

14 Chapter 3. Nesting Python 2

miniutils Documentation, Release 1.0.1

• python2_path – The path to the Python 2 executable to use

15

miniutils Documentation, Release 1.0.1

16 Chapter 3. Nesting Python 2

CHAPTER 4

Miscellaneous

4.1 Code Contracts

Code contracting seems like a great way to define and document your code’s expected behavior, easily integrate bounds
checking, and just generally write code that tries to avoid bugs. The pycontracts package provides this capability within
python, but as soon as I started using it I realized that it was meant primarily to be robust, not concise. For example,
consider the following code:

class ObjA:
pass

class ObjB:
pass

@contract
def sample_func(a):

"""A function that requires an A object

:param a: A thing
:type a: ObjA
:return: What you gave it
:rtype: ObjB
"""
return ObjB()

This seems intuitive what should happen–you’re not using any complex attributes of the types, merely indicating that
is should be of that type–but pycontracts will croak on this because you haven’t explicitly told it about your two
new types.

miniutils.magic_contract is a little wrapper around the contract decorator that looks through the func-
tion’s local namespace, finds types that aren’t already registered with pycontracts, and adds them as a simple
isinstance check. Using it, we can write almost the exact same code:

17

https://andreacensi.github.io/contracts/

miniutils Documentation, Release 1.0.1

class ObjA:
pass

class ObjB:
pass

@magic_contract # Uses the magic contract
def sample_func(a):

"""A function that requires an A object

:param a: A thing
:type a: ObjA
:return: What you gave it
:rtype: ObjB
"""
return ObjB()

And now the function works like you’d expect. If you want to do something more complex when adding an object
as a contractable type, just use contracts.new_contract like you normally would, and magic_contract
won’t clobber your definition. Also, since this decorator is just a wrapper around contracts.contract, you can
continue using pycontracts as always, and the magic contract won’t affect any of the rest of your code.

miniutils.magic_contract.magic_contract(*args, **kwargs)
Drop-in replacement for pycontracts.contract decorator, except that it supports locally-visible types

Parameters

• args – Arguments to pass to the contract decorator

• kwargs – Keyword arguments to pass to the contract decorator

Returns The contracted function

4.2 Simplifying Decorators

When writing a decorator that could be used like @deco or @deco(), there’s a little code I’ve found necessary in
order to make both cases function identically. I’ve isolated this code into another decorator (meta-decorator?) to keep
my other decorators simple (since, let’s be honest, decorators are usually convoluted enough as is).

Consider the following decorator definition:

def deco(return_name=False):
def inner_deco(func):

def inner(*a, **kw):
if return_name:

return func.__name__, func(*a, **kw)
else:

return func(*a, **kw)
return inner

return inner_deco

@deco() # Works correctly
def g(i):

return i

(continues on next page)

18 Chapter 4. Miscellaneous

miniutils Documentation, Release 1.0.1

(continued from previous page)

@deco(True) # Works correctly
def h(i):

return i

@deco(return_name=True) # Works correctly
def k(i):

return i

@deco # Fails, since f gets assigned to return_names instead of func
def f(i):

return i

This makes sense, but is somewhat annoying when parameters aren’t required, such as is the case in several built-in
Python decorators. To make this last case work like the first, we can simply decorate our decorator:

@optional_argument_decorator
def deco(return_name=False):

def inner_deco(func):
def inner(*a, **kw):

if return_name:
return func.__name__, func(*a, **kw)

else:
return func(*a, **kw)

return inner
return inner_deco

@deco() # Works correctly
def g(i):

return i

@deco(True) # This still works
def h(i):

return i

@deco(return_name=True) # As does this
def k(i):

return i

@deco # Now this works too!
def f(i):

return i

miniutils.opt_decorator.optional_argument_decorator(_decorator)
Decorate your decorator with this to allow it to always receive *args and **kwargs, making @deco equivalent
to @deco()

4.3 Logging Made Easy

The standard logging module provides a lot of great functionality, but there are a few simplifications missing:

1. Intuitive colored logging to terminal

2. Fallback logging utilities when “logging” should only be enabled in certain contexts

3. “One-click” logging setup

4.3. Logging Made Easy 19

miniutils Documentation, Release 1.0.1

As a slight simplification, miniutils provides a wrapper around the logging module to provide these features.

4.3.1 Usage

To use the logging features listed below, just import the logger:

from miniutils.logs import logger

If you want to use logging when available, but fall back to simply print to stderr when the logger isn’t initialized
elsewhere (for example, if you’re writing a helper module that shouldn’t dictate the logging format used in the user
code), you can obtain a proxy logger object:

from miniutils import logs_base as logger

This module has info, warn, warning, error, critical, and log calls that use the logger when available, or
fall back to a simple print statement otherwise. If the logger gets loaded from miniutils.logs later, these calls
get swapped out automatically for their full-featured logger alternatives.

To change the logger’s configuration, do something like the following:

from miniutils.logs import enable_logging
enable_logging(fmt_str='$(asctime) (%(levelname)) - $(message)')

This will swap out the logger and handlers that the rest of the logging utilities use.

miniutils.logs.enable_logging(log_level=’NOTSET’, *, logdir=None, use_colors=True,
capture_warnings=True, format_str=’%(asctime)s
[%(launch_script)s | %(levelname)s]: %(message)s’)

4.3.2 Colored Logging

The coloredlogs module didn’t quite work as expected when I tried to use it. It provides lots of handles and
controls, but wasn’t quite as intuitive as I expected it to be. To provide this more intuitive functionality, I wrap
coloredlogs with a custom formatter that behaves more like expected:

• Don’t assume the foreground color (it assumes black-on-white by default; I switch this to pulling the foreground
color from the currently active color swatch)

• Uses case-sensitive match for level names (e.g., ‘DEBUG’, ‘INFO’, etc.), which seems silly. I monkey-patch
this to be case insensitive

• Doesn’t color aliases properly, even though it nominally supports name aliases

4.4 Timing

Simple printf-like timing utilities when proper profiling won’t quite work.

4.4.1 Timing Functions

To make a timed call to a function:

20 Chapter 4. Miscellaneous

miniutils Documentation, Release 1.0.1

from time import sleep
from miniutils.timing import timed_call

def f(a, *, x=1, sleep_dur=0.1):
sleep(sleep_dur)
return a * x

result = timed_call(f, 2, x=3, sleep_dur=0.11)
"Call to 'f' took 0.110240s"

To make all calls to a function timed:

from time import sleep
from miniutils.timing import make_timed

@make_timed
def g(a, *, x=1, sleep_dur=0.1):

sleep(sleep_dur)
return a * x

g(2, x=3, sleep_dur=0.11)
"Call to 'g' took 0.110242s"

miniutils.timing.timed_call(func, *args, log_level=’DEBUG’, **kwargs)
Logs a function’s run time

Parameters

• func – The function to run

• args – The args to pass to the function

• kwargs – The keyword args to pass to the function

• log_level – The log level at which to print the run time

Returns The function’s return value

miniutils.timing.make_timed(func)
A decorator to make a function print its execution time whenever it gets called

4.4.2 Timing Blocks

Use tic/toc to time and report the run times of different chunks of code:

from time import sleep
from miniutils.timing import tic

toc = tic() # Just marks start time
sleep(0.2)
toc('Slept for 0.2 seconds')
"sample_timing.py:6 - Slept for 0.2 seconds - 0.200329s (total=0.2s)"
sleep(.1)
toc('Slept for 0.1 seconds')
"sample_timing.py:8 - Slept for 0.1 seconds - 0.100217s (total=0.3s)"

This utility is just less verbose than tracking various times yourself. The output is printed to the log for later review. It
can also accept a custom print format string, including information about the code calling toc() and runtimes since
the last tic/toc.

4.4. Timing 21

miniutils Documentation, Release 1.0.1

miniutils.timing.tic(log_level=’DEBUG’, fmt=’{file}:{line} - {message} - {diff:0.6f}s (to-
tal={total:0.1f}s)’, verbose=True)

A minimalistic printf-type timing utility. Call this function to start timing individual sections of code

Parameters

• log_level – The level at which to log block run times

• fmt – The format string to use when logging times. Available arguments include:

– file, line, func, code_text: The stack frame information which called this timer

– diff: The time since the last timer printout was called

– total: The time since this timing block was started

– message: The message passed to this timing printout

• verbose – If False, suppress printing messages

Returns A function that reports run times when called

22 Chapter 4. Miscellaneous

CHAPTER 5

API

5.1 Caching

class miniutils.caching.CachedProperty(*affects, settable=False, thread-
safe=True, is_collection=False, al-
low_collection_mutation=True)

Marks this property to be cached. Delete this property to remove the cached value and force it to be rerun.

Parameters

• affects – Strings that list the names of the other properties in this class that are directly
invalidated when this property’s value is altered

• settable – Whether or not to allow this property to have values assigned directly to it

• threadsafe – Whether or not to restrict execution of this property’s code to a single
thread at a time (safe for recursive calls)

• is_collection – Whether or not this property returns a collection (currently supports
lists, sets, and dictionaries; others might not work exactly as expected)

• allow_collection_mutation – Whether or not the returned collection should allow
its values to be altered

__init__(*affects, settable=False, threadsafe=True, is_collection=False, al-
low_collection_mutation=True)

Marks this property to be cached. Delete this property to remove the cached value and force it to be rerun.

Parameters

• affects – Strings that list the names of the other properties in this class that are directly
invalidated when this property’s value is altered

• settable – Whether or not to allow this property to have values assigned directly to it

• threadsafe – Whether or not to restrict execution of this property’s code to a single
thread at a time (safe for recursive calls)

23

miniutils Documentation, Release 1.0.1

• is_collection – Whether or not this property returns a collection (currently supports
lists, sets, and dictionaries; others might not work exactly as expected)

• allow_collection_mutation – Whether or not the returned collection should al-
low its values to be altered

5.2 Progress Bar

miniutils.progress_bar.progbar(iterable, *a, verbose=True, **kw)
Prints a progress bar as the iterable is iterated over

Parameters

• iterable – The iterator to iterate over

• a – Arguments to get passed to tqdm (or tqdm_notebook, if in a Jupyter notebook)

• verbose – Whether or not to print the progress bar at all

• kw – Keyword arguments to get passed to tqdm

Returns The iterable that will report a progress bar

miniutils.progress_bar.parallel_progbar(*args, **kwargs)
Performs a parallel mapping of the given iterable, reporting a progress bar as values get returned

Parameters

• mapper – The mapping function to apply to elements of the iterable

• iterable – The iterable to map

• nprocs – The number of processes (defaults to the number of cpu’s)

• starmap – If true, the iterable is expected to contain tuples and the mapper function gets
each element of a tuple as an argument

• flatmap – If true, flatten out the returned values if the mapper function returns a list of
objects

• shuffle – If true, randomly sort the elements before processing them. This might help
provide more uniform runtimes if processing different objects takes different amounts of
time.

• verbose – Whether or not to print the progress bar

• verbose_flatmap – If performing a flatmap, whether or not to report each object as it’s
returned

• timeout – The number of seconds to wait for each worker process after completing

• kwargs – Any other keyword arguments to pass to the progress bar (see progbar)

Returns A list of the returned objects, in the same order as provided

miniutils.progress_bar.iparallel_progbar(*args, **kwargs)
Performs a parallel mapping of the given iterable, reporting a progress bar as values get returned. Yields objects
as soon as they’re computed, but does not guarantee that they’ll be in the correct order.

Parameters

• mapper – The mapping function to apply to elements of the iterable

• iterable – The iterable to map

24 Chapter 5. API

miniutils Documentation, Release 1.0.1

• nprocs – The number of processes (defaults to the number of cpu’s)

• starmap – If true, the iterable is expected to contain tuples and the mapper function gets
each element of a tuple as an argument

• flatmap – If true, flatten out the returned values if the mapper function returns a list of
objects

• shuffle – If true, randomly sort the elements before processing them. This might help
provide more uniform runtimes if processing different objects takes different amounts of
time.

• verbose – Whether or not to print the progress bar

• verbose_flatmap – If performing a flatmap, whether or not to report each object as it’s
returned

• max_cache – Maximum number of mapped objects to permit in the queue at once

• timeout – The number of seconds to wait for each worker process after completing

• kwargs – Any other keyword arguments to pass to the progress bar (see progbar)

Returns A list of the returned objects, in whatever order they’re done being computed

5.3 Python 2

class miniutils.py2_wrap.MakePython2(func=None, *, imports=None, global_values=None,
copy_function_body=True, python2_path=’python2’)

Make a function execute within a Python 2 instance

Parameters

• func – The function to wrap. If not specified, this class instance behaves like a decorator

• imports – Any import statements the function requires. Should be a list, where each
element is either a string (e.g., 'sys' for import sys) or a tuple (e.g., ('os.path',
'path') for import os.path as pas)

• global_values – A dictionary of global variables the function relies on. Key must be
strings, and values must be picklable

• copy_function_body – Whether or not to copy the function’s source code into the
Python 2 instance

• python2_path – The path to the Python 2 executable to use

__init__(func=None, *, imports=None, global_values=None, copy_function_body=True,
python2_path=’python2’)

Make a function execute within a Python 2 instance

Parameters

• func – The function to wrap. If not specified, this class instance behaves like a decorator

• imports – Any import statements the function requires. Should be a list, where each
element is either a string (e.g., 'sys' for import sys) or a tuple (e.g., ('os.path',
'path') for import os.path as pas)

• global_values – A dictionary of global variables the function relies on. Key must be
strings, and values must be picklable

5.3. Python 2 25

miniutils Documentation, Release 1.0.1

• copy_function_body – Whether or not to copy the function’s source code into the
Python 2 instance

• python2_path – The path to the Python 2 executable to use

5.4 Pragma

5.5 Miscellaneous

5.5.1 Magic Contracting

miniutils.magic_contract.magic_contract(*args, **kwargs)
Drop-in replacement for pycontracts.contract decorator, except that it supports locally-visible types

Parameters

• args – Arguments to pass to the contract decorator

• kwargs – Keyword arguments to pass to the contract decorator

Returns The contracted function

5.5.2 Simplifying Decorators

miniutils.opt_decorator.optional_argument_decorator(_decorator)
Decorate your decorator with this to allow it to always receive *args and **kwargs, making @deco equivalent
to @deco()

5.5.3 Logging

miniutils.logs.enable_logging(log_level=’NOTSET’, *, logdir=None, use_colors=True,
capture_warnings=True, format_str=’%(asctime)s
[%(launch_script)s | %(levelname)s]: %(message)s’)

5.5.4 Timing

miniutils.timing.timed_call(func, *args, log_level=’DEBUG’, **kwargs)
Logs a function’s run time

Parameters

• func – The function to run

• args – The args to pass to the function

• kwargs – The keyword args to pass to the function

• log_level – The log level at which to print the run time

Returns The function’s return value

miniutils.timing.make_timed(func)
A decorator to make a function print its execution time whenever it gets called

26 Chapter 5. API

miniutils Documentation, Release 1.0.1

miniutils.timing.tic(log_level=’DEBUG’, fmt=’{file}:{line} - {message} - {diff:0.6f}s (to-
tal={total:0.1f}s)’, verbose=True)

A minimalistic printf-type timing utility. Call this function to start timing individual sections of code

Parameters

• log_level – The level at which to log block run times

• fmt – The format string to use when logging times. Available arguments include:

– file, line, func, code_text: The stack frame information which called this timer

– diff: The time since the last timer printout was called

– total: The time since this timing block was started

– message: The message passed to this timing printout

• verbose – If False, suppress printing messages

Returns A function that reports run times when called

5.5. Miscellaneous 27

miniutils Documentation, Release 1.0.1

28 Chapter 5. API

CHAPTER 6

Overview

This module provides numerous helper utilities for Python3.X code to add functionality with minimal code footprint.
It has tools for the following tasks:

• Progress bars on serial loops and parallel mappings (leveraging the excellent tqdm library)

• Simple lazy-compute and caching of class properties, including dependency chaining

• Executing Python2 code from within a Python3 program

• More intuitive contract decorator (leveraging pycontracts)

29

miniutils Documentation, Release 1.0.1

30 Chapter 6. Overview

CHAPTER 7

Installation

As usual, you can install the latest code version directly from Github:

pip install git+https://github.com/scnerd/miniutils

Or you can pip install the latest release from PyPi:

pip install miniutils

31

miniutils Documentation, Release 1.0.1

32 Chapter 7. Installation

CHAPTER 8

Examples

To get started, you can import your desired utilities directly from miniutils. For example, to use the
CachedProperty decorator:

from miniutils import CachedProperty

class MyClass:
@CachedProperty
def attribute(self):

return some_slow_computation(self)

Or to use the progress bar utilities:

from miniutils import progbar, parallel_progbar

def mapper(x):
return x**2

assert [mapper(i) for i in progbar(100)] == parallel_progbar(mapper, range(100))

To see documentation for each feature, look through this documentation or the table of contents above.

33

miniutils Documentation, Release 1.0.1

34 Chapter 8. Examples

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

35

miniutils Documentation, Release 1.0.1

36 Chapter 9. Indices and tables

Index

Symbols
__init__() (miniutils.caching.CachedProperty

method), 23
__init__() (miniutils.py2_wrap.MakePython2

method), 14, 25

C
cache_clear() (miniutils.caching.FileCached

method), 12
cache_info() (miniutils.caching.FileCached

method), 12
CachedProperty (class in miniutils.caching), 9, 23

E
enable_logging() (in module miniutils.logs), 20, 26

F
file_cached_decorator() (in module miniu-

tils.caching), 12
FileCached (class in miniutils.caching), 11

I
iparallel_progbar() (in module miniu-

tils.progress_bar), 5, 24

L
LazyDictionary (class in miniutils.caching), 10

M
magic_contract() (in module miniu-

tils.magic_contract), 18, 26
make_timed() (in module miniutils.timing), 21, 26
MakePython2 (class in miniutils.py2_wrap), 14, 25

O
optional_argument_decorator() (in module

miniutils.opt_decorator), 19, 26

P
parallel_progbar() (in module miniu-

tils.progress_bar), 4, 24
progbar() (in module miniutils.progress_bar), 3, 24

T
tic() (in module miniutils.timing), 21, 26
timed_call() (in module miniutils.timing), 21, 26

37

	Progress Bars
	progbar
	parallel_progbar
	iparallel_progbar

	Property Cache
	Basic Property
	Indexed Property
	File-backed Function Cache

	Nesting Python 2
	Miscellaneous
	Code Contracts
	Simplifying Decorators
	Logging Made Easy
	Timing

	API
	Caching
	Progress Bar
	Python 2
	Pragma
	Miscellaneous

	Overview
	Installation
	Examples
	Indices and tables
	Index

