

Welcome to miniutils’s documentation!

[image: _images/badge.svg]
 [https://coveralls.io/github/scnerd/miniutils?branch=master][image: _images/miniutils.svg]
 [https://travis-ci.org/scnerd/miniutils][image: Documentation Status]
 [http://miniutils.readthedocs.io/en/latest/?badge=latest]
Contents:

	Progress Bars
	progbar

	parallel_progbar

	iparallel_progbar

	Property Cache
	Basic Property

	Indexed Property

	File-backed Function Cache

	Nesting Python 2

	Miscellaneous
	Code Contracts

	Simplifying Decorators

	Logging Made Easy

	Timing

	API
	Caching

	Progress Bar

	Python 2

	Pragma

	Miscellaneous

Overview

This module provides numerous helper utilities for Python3.X code to add functionality with minimal code footprint. It has tools for the following tasks:

	Progress bars on serial loops and parallel mappings (leveraging the excellent tqdm library)

	Simple lazy-compute and caching of class properties, including dependency chaining

	Executing Python2 code from within a Python3 program

	More intuitive contract decorator (leveraging pycontracts)

Installation

As usual, you can install the latest code version directly from Github:

pip install git+https://github.com/scnerd/miniutils

Or you can pip install the latest release from PyPi:

pip install miniutils

Examples

To get started, you can import your desired utilities directly from miniutils. For example, to use the CachedProperty decorator:

from miniutils import CachedProperty

class MyClass:
 @CachedProperty
 def attribute(self):
 return some_slow_computation(self)

Or to use the progress bar utilities:

from miniutils import progbar, parallel_progbar

def mapper(x):
 return x**2

assert [mapper(i) for i in progbar(100)] == parallel_progbar(mapper, range(100))

To see documentation for each feature, look through this documentation or the table of contents above.

Indices and tables

	Index

	Module Index

	Search Page

Progress Bars

Three progress bar utilities are provided, all leveraging the excellent tqdm [https://pypi.python.org/pypi/tqdm] library.

progbar

A simple iterable wrapper, much like the default tqdm wrapper. It can be used on any iterable to display a progress bar as it gets iterated:

for x in progbar(my_list):
 do_something_slow(x)

However, unlike the standard tqdm function, this code has two additional, useful behaviors: first, it automatically leverages the ipywidgets progress bar when run inside a jupyter notebook; second, if given an integer, it automatically creates range(n) to iterate on. Both of these features are available in the tqdm library, but as separate functions. progbar wraps them all into a single intuitive call. It even includes a verbose flag that can be disabled to eliminate the progress bar based on runtime variables, if so desired.

	
miniutils.progress_bar.progbar(iterable, *a, verbose=True, **kw)[source]

	Prints a progress bar as the iterable is iterated over

	Parameters

	
	iterable – The iterator to iterate over

	a – Arguments to get passed to tqdm (or tqdm_notebook, if in a Jupyter notebook)

	verbose – Whether or not to print the progress bar at all

	kw – Keyword arguments to get passed to tqdm

	Returns

	The iterable that will report a progress bar

parallel_progbar

A parallel mapper based on multiprocessing that replaces Pool.map. In attempting to use Pool.map, I’ve had issues with unintuitive errors and, of course, wanting a progress bar of my map job’s progress. Both of these are solved in parallel_progbar:

results = parallel_progbar(do_something_slow, my_list)
Equivalent to a parallel version of [do_something_slow(x) for x in my_list]

This produces a pool of processes, and performs a map function in parallel on the items of the provided list.

Starmap behavior:

results = parallel_progbar(do_something_slow, my_list, starmap=True)
[do_something_slow(*x) for x in my_list]

And/or flatmap behavior:

results = parallel_progbar(make_more_things, my_things, flatmap=True)
Equivalent to a parallel version of [y for x in my_things for y in make_more_things(x)]

It also supports runtime disabling, limited number of parallel processes, shuffling before mapping (in case the order of your list puts, say, a few slowest items near the end), and even an optional second progress bar when performing a flatmap. This second bar just reports the number of items output (y in the case above), while the main progress bar counts down the number of finished inputs (x).

	
miniutils.progress_bar.parallel_progbar(*args, **kwargs)[source]

	Performs a parallel mapping of the given iterable, reporting a progress bar as values get returned

	Parameters

	
	mapper – The mapping function to apply to elements of the iterable

	iterable – The iterable to map

	nprocs – The number of processes (defaults to the number of cpu’s)

	starmap – If true, the iterable is expected to contain tuples and the mapper function gets each element of a
tuple as an argument

	flatmap – If true, flatten out the returned values if the mapper function returns a list of objects

	shuffle – If true, randomly sort the elements before processing them. This might help provide more uniform
runtimes if processing different objects takes different amounts of time.

	verbose – Whether or not to print the progress bar

	verbose_flatmap – If performing a flatmap, whether or not to report each object as it’s returned

	timeout – The number of seconds to wait for each worker process after completing

	kwargs – Any other keyword arguments to pass to the progress bar (see progbar)

	Returns

	A list of the returned objects, in the same order as provided

iparallel_progbar

This has the exact same behavior as parallel_progbar, but produces an unordered generator instead of a list, yielding results as soon as they’re available. It also permits a max_cache argument that allows you to limit the number of computed results available to the generator.

for result in iparallel_progbar(do_something_slow, my_list):
 print("Result {} done!".format(result))

	
miniutils.progress_bar.iparallel_progbar(*args, **kwargs)[source]

	Performs a parallel mapping of the given iterable, reporting a progress bar as values get returned. Yields
objects as soon as they’re computed, but does not guarantee that they’ll be in the correct order.

	Parameters

	
	mapper – The mapping function to apply to elements of the iterable

	iterable – The iterable to map

	nprocs – The number of processes (defaults to the number of cpu’s)

	starmap – If true, the iterable is expected to contain tuples and the mapper function gets each element of a
tuple as an argument

	flatmap – If true, flatten out the returned values if the mapper function returns a list of objects

	shuffle – If true, randomly sort the elements before processing them. This might help provide more uniform
runtimes if processing different objects takes different amounts of time.

	verbose – Whether or not to print the progress bar

	verbose_flatmap – If performing a flatmap, whether or not to report each object as it’s returned

	max_cache – Maximum number of mapped objects to permit in the queue at once

	timeout – The number of seconds to wait for each worker process after completing

	kwargs – Any other keyword arguments to pass to the progress bar (see progbar)

	Returns

	A list of the returned objects, in whatever order they’re done being computed

Property Cache

Basic Property

In some cases, an object has properties that don’t need to be computed until necessary, and once computed are generally static and could just be cached. This could be accomplished using the following simple recipe:

class Obj:
 def __init__(self):
 self._attribute = None
 ...

 @property
 def attribute(self):
 if self._attribute is None:
 self._attribute = some_slow_computation(self)
 return self._attribute

If you want to support re-computation (besides just setting the object to None again), it’s not hard to add:

class Obj:
 def __init__(self):
 self._attribute = None
 self._need_attribute = True
 ...

 @property
 def attribute(self):
 if self._need_attribute:
 self._attribute = some_slow_computation(self)
 self._need_attribute = False
 return self._attribute

...
attr1 = my_obj.attribute
my_obj._need_attribute = True
attr2 = my_obj.attribute # Re-computes attribute

Adding inter-dependence between such properties is not hard, but quickly becomes verbose. In fact, all of this code is verbose relative to the simple goal: for some property x, define its value, but don’t actually compute it until necessary, and allow the code to make it “necessary” again. This is easy to describe, and easy to think of, but just convoluted to code (but fortunately, easy to template).

To simplify this process, miniutils provides a CachedProperty decorator that’s simple by default, and moderately powerful when necessary. Let’s take a look at a simple use case first, then we’ll examine its capabilities:

class Obj:
 @CachedProperty()
 def attribute(self):
 return some_slow_computation(self)

That’s all you need. No need to initialize, set up flags, or anything. It’s all handled automatically. A use case like above might look like:

attr1 = my_object.attribute # Computed the first time
attr2 = my_object.attribute # Loaded from cache
assert attr1 is attr2
del my_object.attribute # Deletes the cached object and marks for re-computation
attr3 = my_object.attribute # Re-computes the value

Despite being simple to use, it’s still a fairly powerful decorator:

	Like @property, this method is converted to a property (in fact, the property function is used under the hood, so you don’t have any CachedProperty objects floating around)

	The result is lazy-computed, just like you’d expect from a property

	The result is cached and returned instantly if not marked for re-computation (note that the object doesn’t have to be hashable since there’s no lookup being performed)

	Its computation can affect the computation of other properties, and thus automatically mark those properties for re-computation when needed (i.e., it maintains a dependency chain amongst CachedProperties)

	A simple setter can be automatically defined which invalidates downstream properties without needing more code (note that, at this time, you can’t safely define a custom setter, you can either use the default or let the property be unsettable)

	If the property returns a basic iterable (list, dictionary, set), it’s wrapped so that modifications to its content (if permitted) invalidate downstream properties.

A key feature not yet demonstrated is the ability to add dependencies amongst properties. Essentially, this defines a directed graph where resetting, re-computing, or altering upstream properties marks all dependent downstream properties for re-computation. This can be seen in the following demonstration:

class Printer:
 @CachedProperty('b', settable=True)
 def a(self):
 print("Running a")
 return 5

 @CachedProperty('c', is_collection=True)
 def b(self):
 print("Running b")
 return [self.a] * 100

 @CachedProperty('d')
 def c(self):
 print("Running c")
 return sum(self.b)

 @CachedProperty()
 def d(self):
 print("Running d")
 return str(self.c ** 2)

p = Printer()
p.a # Computes A
p.c # Computes C, during which it computes B
p.a = 3 # Sets A, invalidating B and C (and D, if it weren't already invalid)
p.c # Computes C, and thus B, again
p.c # Returns the cached value for C
p.b[0] = 0 # Alters a value within B (not B itself), which correctly invalidates C
p.c # Computes C, using cached B
del p.a # Invalidates A, and therefore B and C
p.d # Computes D, and thus C, B, and A

This isn’t the complete feature set of the decorator, but it’s a good initial taste of what can be accomplished using it.

	
class miniutils.caching.CachedProperty(*affects, settable=False, threadsafe=True, is_collection=False, allow_collection_mutation=True)

	Marks this property to be cached. Delete this property to remove the cached value and force it to be rerun.

	Parameters

	
	affects – Strings that list the names of the other properties in this class that are directly invalidated
when this property’s value is altered

	settable – Whether or not to allow this property to have values assigned directly to it

	threadsafe – Whether or not to restrict execution of this property’s code to a single thread at a time
(safe for recursive calls)

	is_collection – Whether or not this property returns a collection (currently supports lists, sets, and
dictionaries; others might not work exactly as expected)

	allow_collection_mutation – Whether or not the returned collection should allow its values to be altered

Indexed Property

Even using the above tools, it is non-concise to allow indexing into a property where values are lazily computed.

The LazyDictionary decorator allows you to write a __getitem__ style property that can be used like a dictionary and has its results cached:

class Primes:
 @LazyDictionary()
 def is_prime(self, i):
 if not isinstance(i, int) or i < 1:
 raise ValueError("Can only check if a positive integer is prime")
 elif i in [1, 2]:
 return True
 elif i % 2 == 0:
 return False
 else:
 return all(i % p != 0 for p in range(3, int(math.sqrt(i)) + 1, 2) if self.is_prime[p])

p = Primes()
p.is_prime[5] # True, caches the fact that 1, 2, and 3 are prime
p.is_prime[500] # False, caches all primes up to sqrt(500)
p.is_prime[501] # False, virtually instant since it uses the cached primes used to compute is_prime[500]

The indexing notation is used and preferred to make clear that this decorator only aims to support one hashable argument, and is meant to behave like a dictionary or list. It is not iterable, since the result of that would depend on whatever prior code happened to be executed. Instead, you should iterate through all desired keys, and simply index them; that way, any that need to be re-computed are, and those that can are loaded from cache.

This plugs cleanly into CachedProperty, accepting a list of properties whose values are invalidated when this dictionary is modified. It also supports allowing or disallowing explicit assignment to certain indices:

p = Primes()
p.is_prime[3] = False
p.is_prime[9] # This is now True, since there is no lesser known prime

This is meant to provide a slight additional feature to having a cached dictionary, though honestly it’s probably a very small improvement over self.is_prime = defaultdict(self._is_prime), since it has the additions of invalidating cached properties and making values dependant on their indices.

Values can be explicitly assigned to indices (if allow_collection_mutation=True); assigned values override cached values. Raised KeyError``s are cached to prevent re-running indices where failure is known. If an error is not due solely to the index, raise some other error to allow that index to be retried later if some variation to the program's state might allow it to succeed. ``.get(key, default) and .update(dict) are also provided to offer a more dictionary-like interface. A particular object instance will have a miniutils.caching._LazyDictionary instance which provides its caching, though the decorated function is once again replaced with a simple @property.

	
class miniutils.caching.LazyDictionary(*affects, allow_collection_mutation=False)

	Marks this indexable property to be a cached dictionary. Delete this property to remove the cached value and force it to be rerun.

	Parameters

	
	affects – Strings that list the names of the other properties in this class that are directly invalidated
when this property’s value is altered

	allow_collection_mutation – Whether or not the returned collection should allow its values to be altered

File-backed Function Cache

As a file-based alternative to simple function caching (such as that provided by functools.lru_cache), miniutils.caching.FileCached provides caching of a function’s results using shelve as its storage backend. This is primarily intended for long-run file processing scripts, and as such it natively supports invalidating cache items if relied-upon files are modified since when the cache entry was created.

There are several ways to use this cache. The simplest is to use it as a decorator, leveraging miniutils.caching.file_cached_decorator(). The following example stores the results of load_data in a cache at ./preprocessed, which gets automatically invalidated when /path/to/data.csv gets modified:

@file_cached_decorator('./preprocessed', files_used=['/path/to/data.csv'])
def load_data():
 df = pandas.read_csv('/path/to/data.csv')
 # Modify, clean, process data
 return df

This could also be accomplished on a function not defined in the user code, using miniutils.caching.FileCached directly:

data = FileCached(load_data, './preprocessed', files_used=['/path/to/data.csv'])

By offloading the generation of the cache to the caller code, it’s also possible to dynamically provide the list of files being used when they are arguments to the function:

def load_data(path):
 df = pandas.read_csv(path)
 # ...

data = FileCached(load_data, './preprocessed', files_used=[data_path])(data_path)

This use of miniutils.caching.FileCached is how it is meant to be used when attempting to store function results across multiple runs of a script. Each time the script is run, it will connect to the same persistent on-disk cache, update if function arguments or relied-upon files change, and synchronize any new function results back to disk before the program exits.

By default, miniutils.caching.FileCached and its decorator form generate a cache filepath based on the function’s name if no explicit name is set. It is recommended not to use this default name if you wish to use the cache between runs of Python, since any change to the function’s name will invalidate the cache; also, this breaks if you wish to cache multiple functions with the same name.

Warning

Note that shelve, and therefore miniutils.caching.FileCached, is not thread-safe or multiprocess-safe, so this cache will likely fail if being used in any parallel fashion. To use a data store in a parallel fashion, you should probably rely on a robust database system of some sort, such as MongoDB.

Warning

When purging a file cache, miniutils.caching.FileCached deletes all files matching its database’s filepath. Make sure that the file path given for the cache has no relation to any other code or data files used by your program.

	
class miniutils.caching.FileCached(fn, cache_path=None, files_used=None, auto_purge=False)

	Caches function results to a file to save re-computation of highly expensive calls

	Parameters

	
	fn (function) – The functions whose result should be cached

	cache_path (str) – No-extension file path where cache should be kept

	files_used (Iterable) – List of files that could effect the result of this function; cache results are invalidated if any of these files are updated since the last function call

	auto_purge – If True, deletes the file cache when this cache object passes out of scope

	Type

	auto_purge: bool

	
cache_clear(create_new_shelf=True)

	Deletes the underlying cache

	
cache_info()

	Gets information about this cache.

	Returns

	A named tuple containing the number of cache hits and misses

	
miniutils.caching.file_cached_decorator(*args, **kwargs)

	A decorator version of FileCached

	Parameters

	
	cache_path (str) – No-extension file path where cache should be kept

	files_used (Iterable) – List of files that could effect the result of this function; cache results are invalidated if any of these files are updated since the last function call

	auto_purge – If True, deletes the file cache when this cache object passes out of scope

	Type

	auto_purge: bool

	Returns

	A decorator for a function

	Return type

	function

Nesting Python 2

In very rare situations, the standard means of Python2 compatibility within Python3 (such as six, 2to3, or __futures__) might simply be insufficient. Sometimes, you just need to run Python2 wholesale to get the correct behavior.

This is not generally advised at all. I built this out of necessity, where identical function calls to a built-in Python package worked in Python2 and broke in Python3, and I could see no other way to solve the problem. Please exhaust all other options before deciding to use this hack.

In the vein of making complex modules in support of simple code, I wrapped the entire behavior into a function decorator. Define the function you want to run in Python2, decorate it, then just run it like you normally would. Voila, it’s executed in a Python2 subprocess.

This works essentially using code templating. A Python2 instance is kicked off as a subprocess; it loads the parameters needed to run the function (as given to the decorator); finally, it sits in an infinite loop receiving arguments as pickles, running them through the function, and returning the results as pickles. It’s designed to run self-contained functions, with some support for wrapping functions defined in external modules (though generally, in this case, I’d recommend writing a simple self-contained function that loads that module and runs the function).

Let’s take a look at a minimal example:

@MakePython2()
def get_version():
 import sys
 return sys.version_info[0]

get_version() # Reports that we're in Python 2

import sys
sys.version_info[0] # Reports that we're in Python 3

Of course, not every function is self-contained like this. To handle the majority of easy cases, the MakePython2 decorator supports pre-defining a set of imports and global variables.

Imports are given as a list of items, each of which should be either a simple string:

@MakePython2(imports=['sys'])
def get_version():
 return sys.version_info[0]

or as a tuple of (package, name):

@MakePython2(imports=[('sys', 'another_name')])
def get_version():
 return another_name.version_info[0]

Global variables (if they can be pickled using protocol 2, the highest protocol for Python2) can be given as a dictionary of dict(name=value,...):

@MakePython2(global_values={'x': 5})
def add(y):
 return x + y

Additional features include changing the Python2 executable path, specifying that the function code shouldn’t be copied to the Python2 instance (e.g., if you’re just running a single function from an external module), and specifying the function to execute by name instead of by passing the function directly.

For example, to execute an external function, you can use the class as a wrapper instead of using the decorator notation:

uname = MakePython2('os.uname', imports=['os'], copy_function_body=False).function

	
class miniutils.py2_wrap.MakePython2(func=None, *, imports=None, global_values=None, copy_function_body=True, python2_path='python2')[source]

	Make a function execute within a Python 2 instance

	Parameters

	
	func – The function to wrap. If not specified, this class instance behaves like a decorator

	imports – Any import statements the function requires. Should be a list, where each element is either a
string (e.g., 'sys' for import sys)
or a tuple (e.g., ('os.path', 'path') for import os.path as pas)

	global_values – A dictionary of global variables the function relies on. Key must be strings, and values
must be picklable

	copy_function_body – Whether or not to copy the function’s source code into the Python 2 instance

	python2_path – The path to the Python 2 executable to use

	
__init__(func=None, *, imports=None, global_values=None, copy_function_body=True, python2_path='python2')[source]

	Make a function execute within a Python 2 instance

	Parameters

	
	func – The function to wrap. If not specified, this class instance behaves like a decorator

	imports – Any import statements the function requires. Should be a list, where each element is either a
string (e.g., 'sys' for import sys)
or a tuple (e.g., ('os.path', 'path') for import os.path as pas)

	global_values – A dictionary of global variables the function relies on. Key must be strings, and values
must be picklable

	copy_function_body – Whether or not to copy the function’s source code into the Python 2 instance

	python2_path – The path to the Python 2 executable to use

Miscellaneous

Code Contracts

Code contracting seems like a great way to define and document your code’s expected behavior, easily integrate bounds checking, and just generally write code that tries to avoid bugs. The pycontracts [https://andreacensi.github.io/contracts/] package provides this capability within python, but as soon as I started using it I realized that it was meant primarily to be robust, not concise. For example, consider the following code:

class ObjA:
 pass

class ObjB:
 pass

@contract
def sample_func(a):
 """A function that requires an A object

 :param a: A thing
 :type a: ObjA
 :return: What you gave it
 :rtype: ObjB
 """
 return ObjB()

This seems intuitive what should happen–you’re not using any complex attributes of the types, merely indicating that is should be of that type–but pycontracts will croak on this because you haven’t explicitly told it about your two new types.

miniutils.magic_contract is a little wrapper around the contract decorator that looks through the function’s local namespace, finds types that aren’t already registered with pycontracts, and adds them as a simple isinstance check. Using it, we can write almost the exact same code:

class ObjA:
 pass

class ObjB:
 pass

@magic_contract # Uses the magic contract
def sample_func(a):
 """A function that requires an A object

 :param a: A thing
 :type a: ObjA
 :return: What you gave it
 :rtype: ObjB
 """
 return ObjB()

And now the function works like you’d expect. If you want to do something more complex when adding an object as a contractable type, just use contracts.new_contract like you normally would, and magic_contract won’t clobber your definition. Also, since this decorator is just a wrapper around contracts.contract, you can continue using pycontracts as always, and the magic contract won’t affect any of the rest of your code.

	
miniutils.magic_contract.magic_contract(*args, **kwargs)[source]

	Drop-in replacement for pycontracts.contract decorator, except that it supports locally-visible types

	Parameters

	
	args – Arguments to pass to the contract decorator

	kwargs – Keyword arguments to pass to the contract decorator

	Returns

	The contracted function

Simplifying Decorators

When writing a decorator that could be used like @deco or @deco(), there’s a little code I’ve found necessary in order to make both cases function identically. I’ve isolated this code into another decorator (meta-decorator?) to keep my other decorators simple (since, let’s be honest, decorators are usually convoluted enough as is).

Consider the following decorator definition:

def deco(return_name=False):
 def inner_deco(func):
 def inner(*a, **kw):
 if return_name:
 return func.__name__, func(*a, **kw)
 else:
 return func(*a, **kw)
 return inner
 return inner_deco

@deco() # Works correctly
def g(i):
 return i

@deco(True) # Works correctly
def h(i):
 return i

@deco(return_name=True) # Works correctly
def k(i):
 return i

@deco # Fails, since f gets assigned to return_names instead of func
def f(i):
 return i

This makes sense, but is somewhat annoying when parameters aren’t required, such as is the case in several built-in Python decorators. To make this last case work like the first, we can simply decorate our decorator:

@optional_argument_decorator
def deco(return_name=False):
 def inner_deco(func):
 def inner(*a, **kw):
 if return_name:
 return func.__name__, func(*a, **kw)
 else:
 return func(*a, **kw)
 return inner
 return inner_deco

@deco() # Works correctly
def g(i):
 return i

@deco(True) # This still works
def h(i):
 return i

@deco(return_name=True) # As does this
def k(i):
 return i

@deco # Now this works too!
def f(i):
 return i

	
miniutils.opt_decorator.optional_argument_decorator(_decorator)[source]

	Decorate your decorator with this to allow it to always receive *args and **kwargs, making @deco equivalent to
@deco()

Logging Made Easy

The standard logging module provides a lot of great functionality, but there are a few simplifications missing:

	Intuitive colored logging to terminal

	Fallback logging utilities when “logging” should only be enabled in certain contexts

	“One-click” logging setup

As a slight simplification, miniutils provides a wrapper around the logging module to provide these features.

Usage

To use the logging features listed below, just import the logger:

from miniutils.logs import logger

If you want to use logging when available, but fall back to simply print to stderr when the logger isn’t initialized elsewhere (for example, if you’re writing a helper module that shouldn’t dictate the logging format used in the user code), you can obtain a proxy logger object:

from miniutils import logs_base as logger

This module has info, warn, warning, error, critical, and log calls that use the logger when available, or fall back to a simple print statement otherwise. If the logger gets loaded from miniutils.logs later, these calls get swapped out automatically for their full-featured logger alternatives.

To change the logger’s configuration, do something like the following:

from miniutils.logs import enable_logging
enable_logging(fmt_str='$(asctime) (%(levelname)) - $(message)')

This will swap out the logger and handlers that the rest of the logging utilities use.

	
miniutils.logs.enable_logging(log_level='NOTSET', *, logdir=None, use_colors=True, capture_warnings=True, format_str='%(asctime)s [%(launch_script)s | %(levelname)s]: %(message)s')[source]

	

Colored Logging

The coloredlogs module didn’t quite work as expected when I tried to use it. It provides lots of handles and controls, but wasn’t quite as intuitive as I expected it to be. To provide this more intuitive functionality, I wrap coloredlogs with a custom formatter that behaves more like expected:

	Don’t assume the foreground color (it assumes black-on-white by default; I switch this to pulling the foreground color from the currently active color swatch)

	Uses case-sensitive match for level names (e.g., ‘DEBUG’, ‘INFO’, etc.), which seems silly. I monkey-patch this to be case insensitive

	Doesn’t color aliases properly, even though it nominally supports name aliases

Timing

Simple printf-like timing utilities when proper profiling won’t quite work.

Timing Functions

To make a timed call to a function:

from time import sleep
from miniutils.timing import timed_call

def f(a, *, x=1, sleep_dur=0.1):
 sleep(sleep_dur)
 return a * x

result = timed_call(f, 2, x=3, sleep_dur=0.11)
"Call to 'f' took 0.110240s"

To make all calls to a function timed:

from time import sleep
from miniutils.timing import make_timed

@make_timed
def g(a, *, x=1, sleep_dur=0.1):
 sleep(sleep_dur)
 return a * x

g(2, x=3, sleep_dur=0.11)
"Call to 'g' took 0.110242s"

	
miniutils.timing.timed_call(func, *args, log_level='DEBUG', **kwargs)[source]

	Logs a function’s run time

	Parameters

	
	func – The function to run

	args – The args to pass to the function

	kwargs – The keyword args to pass to the function

	log_level – The log level at which to print the run time

	Returns

	The function’s return value

	
miniutils.timing.make_timed(func)[source]

	A decorator to make a function print its execution time whenever it gets called

Timing Blocks

Use tic/toc to time and report the run times of different chunks of code:

from time import sleep
from miniutils.timing import tic

toc = tic() # Just marks start time
sleep(0.2)
toc('Slept for 0.2 seconds')
"sample_timing.py:6 - Slept for 0.2 seconds - 0.200329s (total=0.2s)"
sleep(.1)
toc('Slept for 0.1 seconds')
"sample_timing.py:8 - Slept for 0.1 seconds - 0.100217s (total=0.3s)"

This utility is just less verbose than tracking various times yourself. The output is printed to the log for later review. It can also accept a custom print format string, including information about the code calling toc() and runtimes since the last tic/toc.

	
miniutils.timing.tic(log_level='DEBUG', fmt='{file}:{line} - {message} - {diff:0.6f}s (total={total:0.1f}s)', verbose=True)[source]

	A minimalistic printf-type timing utility. Call this function to start timing individual sections of code

	Parameters

	
	log_level – The level at which to log block run times

	fmt – The format string to use when logging times. Available arguments include:

	file, line, func, code_text: The stack frame information which called this timer

	diff: The time since the last timer printout was called

	total: The time since this timing block was started

	message: The message passed to this timing printout

	verbose – If False, suppress printing messages

	Returns

	A function that reports run times when called

API

Caching

	
class miniutils.caching.CachedProperty(*affects, settable=False, threadsafe=True, is_collection=False, allow_collection_mutation=True)

	Marks this property to be cached. Delete this property to remove the cached value and force it to be rerun.

	Parameters

	
	affects – Strings that list the names of the other properties in this class that are directly invalidated
when this property’s value is altered

	settable – Whether or not to allow this property to have values assigned directly to it

	threadsafe – Whether or not to restrict execution of this property’s code to a single thread at a time
(safe for recursive calls)

	is_collection – Whether or not this property returns a collection (currently supports lists, sets, and
dictionaries; others might not work exactly as expected)

	allow_collection_mutation – Whether or not the returned collection should allow its values to be altered

	
__init__(*affects, settable=False, threadsafe=True, is_collection=False, allow_collection_mutation=True)

	Marks this property to be cached. Delete this property to remove the cached value and force it to be rerun.

	Parameters

	
	affects – Strings that list the names of the other properties in this class that are directly invalidated
when this property’s value is altered

	settable – Whether or not to allow this property to have values assigned directly to it

	threadsafe – Whether or not to restrict execution of this property’s code to a single thread at a time
(safe for recursive calls)

	is_collection – Whether or not this property returns a collection (currently supports lists, sets, and
dictionaries; others might not work exactly as expected)

	allow_collection_mutation – Whether or not the returned collection should allow its values to be altered

Progress Bar

	
miniutils.progress_bar.progbar(iterable, *a, verbose=True, **kw)

	Prints a progress bar as the iterable is iterated over

	Parameters

	
	iterable – The iterator to iterate over

	a – Arguments to get passed to tqdm (or tqdm_notebook, if in a Jupyter notebook)

	verbose – Whether or not to print the progress bar at all

	kw – Keyword arguments to get passed to tqdm

	Returns

	The iterable that will report a progress bar

	
miniutils.progress_bar.parallel_progbar(*args, **kwargs)

	Performs a parallel mapping of the given iterable, reporting a progress bar as values get returned

	Parameters

	
	mapper – The mapping function to apply to elements of the iterable

	iterable – The iterable to map

	nprocs – The number of processes (defaults to the number of cpu’s)

	starmap – If true, the iterable is expected to contain tuples and the mapper function gets each element of a
tuple as an argument

	flatmap – If true, flatten out the returned values if the mapper function returns a list of objects

	shuffle – If true, randomly sort the elements before processing them. This might help provide more uniform
runtimes if processing different objects takes different amounts of time.

	verbose – Whether or not to print the progress bar

	verbose_flatmap – If performing a flatmap, whether or not to report each object as it’s returned

	timeout – The number of seconds to wait for each worker process after completing

	kwargs – Any other keyword arguments to pass to the progress bar (see progbar)

	Returns

	A list of the returned objects, in the same order as provided

	
miniutils.progress_bar.iparallel_progbar(*args, **kwargs)

	Performs a parallel mapping of the given iterable, reporting a progress bar as values get returned. Yields
objects as soon as they’re computed, but does not guarantee that they’ll be in the correct order.

	Parameters

	
	mapper – The mapping function to apply to elements of the iterable

	iterable – The iterable to map

	nprocs – The number of processes (defaults to the number of cpu’s)

	starmap – If true, the iterable is expected to contain tuples and the mapper function gets each element of a
tuple as an argument

	flatmap – If true, flatten out the returned values if the mapper function returns a list of objects

	shuffle – If true, randomly sort the elements before processing them. This might help provide more uniform
runtimes if processing different objects takes different amounts of time.

	verbose – Whether or not to print the progress bar

	verbose_flatmap – If performing a flatmap, whether or not to report each object as it’s returned

	max_cache – Maximum number of mapped objects to permit in the queue at once

	timeout – The number of seconds to wait for each worker process after completing

	kwargs – Any other keyword arguments to pass to the progress bar (see progbar)

	Returns

	A list of the returned objects, in whatever order they’re done being computed

Python 2

	
class miniutils.py2_wrap.MakePython2(func=None, *, imports=None, global_values=None, copy_function_body=True, python2_path='python2')

	Make a function execute within a Python 2 instance

	Parameters

	
	func – The function to wrap. If not specified, this class instance behaves like a decorator

	imports – Any import statements the function requires. Should be a list, where each element is either a
string (e.g., 'sys' for import sys)
or a tuple (e.g., ('os.path', 'path') for import os.path as pas)

	global_values – A dictionary of global variables the function relies on. Key must be strings, and values
must be picklable

	copy_function_body – Whether or not to copy the function’s source code into the Python 2 instance

	python2_path – The path to the Python 2 executable to use

	
__init__(func=None, *, imports=None, global_values=None, copy_function_body=True, python2_path='python2')

	Make a function execute within a Python 2 instance

	Parameters

	
	func – The function to wrap. If not specified, this class instance behaves like a decorator

	imports – Any import statements the function requires. Should be a list, where each element is either a
string (e.g., 'sys' for import sys)
or a tuple (e.g., ('os.path', 'path') for import os.path as pas)

	global_values – A dictionary of global variables the function relies on. Key must be strings, and values
must be picklable

	copy_function_body – Whether or not to copy the function’s source code into the Python 2 instance

	python2_path – The path to the Python 2 executable to use

Pragma

Miscellaneous

Magic Contracting

	
miniutils.magic_contract.magic_contract(*args, **kwargs)

	Drop-in replacement for pycontracts.contract decorator, except that it supports locally-visible types

	Parameters

	
	args – Arguments to pass to the contract decorator

	kwargs – Keyword arguments to pass to the contract decorator

	Returns

	The contracted function

Simplifying Decorators

	
miniutils.opt_decorator.optional_argument_decorator(_decorator)

	Decorate your decorator with this to allow it to always receive *args and **kwargs, making @deco equivalent to
@deco()

Logging

	
miniutils.logs.enable_logging(log_level='NOTSET', *, logdir=None, use_colors=True, capture_warnings=True, format_str='%(asctime)s [%(launch_script)s | %(levelname)s]: %(message)s')

	

Timing

	
miniutils.timing.timed_call(func, *args, log_level='DEBUG', **kwargs)

	Logs a function’s run time

	Parameters

	
	func – The function to run

	args – The args to pass to the function

	kwargs – The keyword args to pass to the function

	log_level – The log level at which to print the run time

	Returns

	The function’s return value

	
miniutils.timing.make_timed(func)

	A decorator to make a function print its execution time whenever it gets called

	
miniutils.timing.tic(log_level='DEBUG', fmt='{file}:{line} - {message} - {diff:0.6f}s (total={total:0.1f}s)', verbose=True)

	A minimalistic printf-type timing utility. Call this function to start timing individual sections of code

	Parameters

	
	log_level – The level at which to log block run times

	fmt – The format string to use when logging times. Available arguments include:

	file, line, func, code_text: The stack frame information which called this timer

	diff: The time since the last timer printout was called

	total: The time since this timing block was started

	message: The message passed to this timing printout

	verbose – If False, suppress printing messages

	Returns

	A function that reports run times when called

Index

 _
 | C
 | E
 | F
 | I
 | L
 | M
 | O
 | P
 | T

_

 	
 	__init__() (miniutils.caching.CachedProperty method)

 	(miniutils.py2_wrap.MakePython2 method), [1]

C

 	
 	cache_clear() (miniutils.caching.FileCached method)

 	
 	cache_info() (miniutils.caching.FileCached method)

 	CachedProperty (class in miniutils.caching), [1]

E

 	
 	enable_logging() (in module miniutils.logs), [1]

F

 	
 	file_cached_decorator() (in module miniutils.caching)

 	
 	FileCached (class in miniutils.caching)

I

 	
 	iparallel_progbar() (in module miniutils.progress_bar), [1]

L

 	
 	LazyDictionary (class in miniutils.caching)

M

 	
 	magic_contract() (in module miniutils.magic_contract), [1]

 	
 	make_timed() (in module miniutils.timing), [1]

 	MakePython2 (class in miniutils.py2_wrap), [1]

O

 	
 	optional_argument_decorator() (in module miniutils.opt_decorator), [1]

P

 	
 	parallel_progbar() (in module miniutils.progress_bar), [1]

 	
 	progbar() (in module miniutils.progress_bar), [1]

T

 	
 	tic() (in module miniutils.timing), [1]

 	
 	timed_call() (in module miniutils.timing), [1]

 All modules for which code is available

	miniutils.caching.file_call

	miniutils.caching.indexable

	miniutils.caching.property

	miniutils.logs

	miniutils.magic_contract

	miniutils.opt_decorator

	miniutils.progress_bar

	miniutils.py2_wrap

	miniutils.timing

 Source code for miniutils.logs

from miniutils import logs_base

logger = logs_base.logger

[docs]def enable_logging(log_level='NOTSET', *, logdir=None, use_colors=True, capture_warnings=True,
 format_str=r'%(asctime)s [%(launch_script)s | %(levelname)s]: %(message)s'):
 global logger

 import os
 import sys
 import logging.handlers

 if logdir is not None:
 os.makedirs(logdir, exist_ok=True)
 logs_base.logger = logging.getLogger()

 for handler in logs_base.logger.handlers:
 logs_base.logger.removeHandler(handler)

 logs_base.logger.setLevel(getattr(logging, log_level))

 logging.captureWarnings(capture_warnings)

 import __main__ as main
 launch_script = os.path.basename(getattr(main, '__file__', main.__name__))

 class AddLaunchScript(logging.Formatter):
 def format(self, record):
 record.launch_script = launch_script
 return super().format(record)

 plain_formatter = AddLaunchScript(fmt=format_str)
 if use_colors:
 try:
 import coloredlogs

 class SmarterColorer(coloredlogs.ColoredFormatter):
 """By default, the ColoredFormatter makes uncolored attributes into the background color. It also
 requires exact string matches for pre-named levels. This extension makes the formatter behave more
 intuitively. """

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.level_styles['info']['color'] = 'fore'
 # Support upper-case colors to be equal to their lower-case default alternatives
 self.level_styles.update({k.upper(): v for k, v in self.level_styles.items()})
 # Make level aliases color the same as what they point to
 aliases = coloredlogs.find_level_aliases()
 self.level_styles.update({k.upper(): self.level_styles[v.lower()] for k, v in aliases.items()})
 self.level_styles.update({k.lower(): self.level_styles[v.lower()] for k, v in aliases.items()})
 # Don't assume that black is the foreground color... just find and use the foreground color
 coloredlogs.ANSI_COLOR_CODES['fore'] = 9
 self.field_styles['levelname']['color'] = 'fore'

 def format(self, record):
 record.launch_script = launch_script
 style = self.nn.get(self.level_styles, record.levelname)
 if style:
 record.levelname = coloredlogs.ansi_wrap(coloredlogs.coerce_string(record.levelname), **style)
 record.msg = coloredlogs.ansi_wrap(coloredlogs.coerce_string(record.msg), **style)
 return super().format(record)

 color_formatter = SmarterColorer(fmt=format_str)
 except ImportError: # pragma: nocover
 color_formatter = plain_formatter
 else:
 color_formatter = plain_formatter

 if logdir is not None:
 log_file_handler = logging.handlers.RotatingFileHandler(os.path.join(logdir, 'app.log'), maxBytes=2e20,
 backupCount=10)
 log_file_handler.name = 'log_file_handler'
 log_file_handler.setFormatter(plain_formatter)
 log_file_handler.setLevel(logging.NOTSET)
 logs_base.logger.addHandler(log_file_handler)

 std_err_handler = logging.StreamHandler(sys.stderr)
 std_err_handler.name = 'stderr_colored_handler'
 std_err_handler.setFormatter(color_formatter)
 std_err_handler.setLevel(logging.NOTSET)
 logs_base.logger.addHandler(std_err_handler)

 logger = logs_base.logger
 return logs_base.logger

def disable_logging():
 global logger
 logs_base.logger = logger = None

enable_logging()

 Source code for miniutils.magic_contract

from contracts import *
from contracts.library import Extension as _Ext
from miniutils.opt_decorator import optional_argument_decorator

TODO: Figure out efficient mechanism to only enable contracts during testing or debug modes

def safe_new_contract(name, *args, **kwargs):
 if name not in _Ext.registrar:
 new_contract(name, *args, **kwargs)

[docs]@optional_argument_decorator
def magic_contract(*args, **kwargs):
 """Drop-in replacement for ``pycontracts.contract`` decorator, except that it supports locally-visible types

 :param args: Arguments to pass to the ``contract`` decorator
 :param kwargs: Keyword arguments to pass to the ``contract`` decorator
 :return: The contracted function
 """
 def inner_decorator(f):
 for name, val in f.__globals__.items():
 if not name.startswith('_') and isinstance(val, type):
 safe_new_contract(name, val)
 return contract(*args, **kwargs)(f)

 return inner_decorator

 Source code for miniutils.opt_decorator

import functools

[docs]def optional_argument_decorator(_decorator):
 """Decorate your decorator with this to allow it to always receive *args and **kwargs, making @deco equivalent to
 @deco()"""

 @functools.wraps(_decorator)
 def inner_decorator_make(*args, **kwargs):
 if len(args) == 1 and len(kwargs) == 0 and callable(args[0]):
 func = args[0]
 args = tuple()
 kwargs = dict()
 else:
 func = None

 decorator = _decorator(*args, **kwargs)

 if func:
 return decorator(func)
 else:
 return decorator

 return inner_decorator_make

class PipedFunction:
def __init__(self, f, *args, reversed_args=[]):
self.f = f
self.args = args
self.reversed_args = reversed_args
#
def __ror__(self, other):
return PipedFunction(f, self.args, self.reversed_args + [other])
#
#
def function_piping(func)

 Source code for miniutils.progress_bar

import itertools
import multiprocessing as mp
try:
 from nose.plugins.multiprocess import TimedOutException
except ImportError:
 TimedOutException = TimeoutError
import random
import warnings

try:
 from tqdm import tqdm as _tqdm
 try: # pragma: nocover
 # Check if we're in a Jupyter notebook... if so, use the ipywidgets progress bar instead
 from IPython import get_ipython
 if type(get_ipython()).__module__.startswith('ipykernel.'):
 from tqdm import tqdm_notebook as _tqdm
 except (ImportError, NameError): # pragma: nocover
 # IPython isn't even installed, or we're not in it
 pass
except ImportError: # pragma: nocover
 # noinspection PyUnusedLocal
 def _tqdm(iterable, *a, **kw):
 return iterable

[docs]def progbar(iterable, *a, verbose=True, **kw):
 """Prints a progress bar as the iterable is iterated over

 :param iterable: The iterator to iterate over
 :param a: Arguments to get passed to tqdm (or tqdm_notebook, if in a Jupyter notebook)
 :param verbose: Whether or not to print the progress bar at all
 :param kw: Keyword arguments to get passed to tqdm
 :return: The iterable that will report a progress bar
 """
 iterable = range(iterable) if isinstance(iterable, int) else iterable
 if verbose:
 return _tqdm(iterable, *a, **kw)
 else:
 return iterable

def _fun(f, q_in, q_out, flatten, star): # pragma: no cover
 try:
 while True:
 i, x = q_in.get()
 if i is None:
 break
 out = f(*x) if star else f(x)
 if flatten:
 for j, o in enumerate(out):
 q_out.put(((i, j), o))
 q_out.put((None, None))
 else:
 q_out.put((i, out))
 except BaseException as ex:
 q_out.put((None, ex))

def _parallel_progbar_launch(mapper, iterable, nprocs=None, starmap=False, flatmap=False, shuffle=False,
 verbose=True, verbose_flatmap=None, max_cache=-1, timeout=1, **kwargs):

 # Shuffle the iterable if requested, to make the parallel execution potentially more uniform in runtime
 enumerated_iterable = enumerate(iterable)
 if shuffle:
 enumerated_iterable = list(enumerated_iterable)
 # ids = [i for i in sorted(range(len(iterable)), key=lambda x: random.random())]
 # iterable = (iterable[i] for i in ids)
 random.shuffle(enumerated_iterable) # Is this going to be expensive for large lists of large objects?

 # Check that we don't launch more processes than there are elements to map (if that's knowable)
 nprocs = nprocs or mp.cpu_count()
 try:
 nprocs = max(1, min(len(iterable), nprocs))
 except TypeError:
 pass

 # Set up multiprocessing management for mapping
 q_in = mp.Queue()
 q_out = mp.Queue(max_cache)

 procs = [mp.Process(target=_fun, args=(mapper, q_in, q_out, flatmap, starmap)) for _ in range(nprocs)]
 for p in procs:
 p.daemon = True
 p.start()

 # Doing it this way prevents us from storing locally an entire list of the input values unnecessarily, and still
 # gets us the number of elements sent for processing
 sent = (q_in.put((i, x)) for i, x in enumerated_iterable)
 num_sent = sum(1 for _ in sent)
 for _ in range(nprocs):
 # Send out a flag for each process to terminate once all elements are processed
 q_in.put((None, None))

 # Fetch the mapped results from the output queue, printing a progress bar as you go
 if flatmap:
 # If we're flat mapping, then we'll keep separate progress of all returned results (an unknown number) and how
 # many inputs are complete (a known number). The outer loop will track the latter, and the inner loop the former
 results = (q_out.get() for _ in progbar(itertools.count(),
 verbose=verbose if verbose_flatmap is None else verbose_flatmap,
 **kwargs))
 for _ in progbar(num_sent, verbose=verbose):
 for i, x in results:
 # When we're flagged that an input is done being returned in the queue, break the inner loop to make
 # the "completed inputs" progress bar tick
 if i is None:
 if x is None:
 break
 else:
 raise x
 yield i, x
 else:
 for i, x in (q_out.get() for _ in progbar(num_sent, verbose=verbose, **kwargs)):
 if i is None:
 raise x
 yield i, x

 # Clean up
 for p in procs:
 try:
 p.join(timeout)
 except (TimeoutError, mp.TimeoutError, TimedOutException): # pragma: nocover
 warnings.warn("parallel_progbar mapping process failed to close properly (check error output)")

[docs]def parallel_progbar(*args, **kwargs):
 """Performs a parallel mapping of the given iterable, reporting a progress bar as values get returned

 :param mapper: The mapping function to apply to elements of the iterable
 :param iterable: The iterable to map
 :param nprocs: The number of processes (defaults to the number of cpu's)
 :param starmap: If true, the iterable is expected to contain tuples and the mapper function gets each element of a
 tuple as an argument
 :param flatmap: If true, flatten out the returned values if the mapper function returns a list of objects
 :param shuffle: If true, randomly sort the elements before processing them. This might help provide more uniform
 runtimes if processing different objects takes different amounts of time.
 :param verbose: Whether or not to print the progress bar
 :param verbose_flatmap: If performing a flatmap, whether or not to report each object as it's returned
 :param timeout: The number of seconds to wait for each worker process after completing
 :param kwargs: Any other keyword arguments to pass to the progress bar (see ``progbar``)
 :return: A list of the returned objects, in the same order as provided
 """

 results = _parallel_progbar_launch(*args, **kwargs)
 return [x for i, x in sorted(results, key=lambda p: p[0])]

[docs]def iparallel_progbar(*args, **kwargs):
 """Performs a parallel mapping of the given iterable, reporting a progress bar as values get returned. Yields
 objects as soon as they're computed, but does not guarantee that they'll be in the correct order.

 :param mapper: The mapping function to apply to elements of the iterable
 :param iterable: The iterable to map
 :param nprocs: The number of processes (defaults to the number of cpu's)
 :param starmap: If true, the iterable is expected to contain tuples and the mapper function gets each element of a
 tuple as an argument
 :param flatmap: If true, flatten out the returned values if the mapper function returns a list of objects
 :param shuffle: If true, randomly sort the elements before processing them. This might help provide more uniform
 runtimes if processing different objects takes different amounts of time.
 :param verbose: Whether or not to print the progress bar
 :param verbose_flatmap: If performing a flatmap, whether or not to report each object as it's returned
 :param max_cache: Maximum number of mapped objects to permit in the queue at once
 :param timeout: The number of seconds to wait for each worker process after completing
 :param kwargs: Any other keyword arguments to pass to the progress bar (see ``progbar``)
 :return: A list of the returned objects, in whatever order they're done being computed
 """

 results = _parallel_progbar_launch(*args, **kwargs)
 return (x for i, x in results)

 Source code for miniutils.py2_wrap

import inspect
import os
import pickle
import re
import struct
import subprocess as sp
import textwrap

_re_var_name = re.compile(r'^[a-zA-Z_]\w*$', re.UNICODE)
_re_module_name = re.compile(r'^[a-zA-Z_.][\w.]*$', re.UNICODE)

TODO: Use fd's besides stdin and stdout, so that you don't mess with code that reads or writes to those streams
[docs]class MakePython2:
 pickle_protocol = 2
 template = os.path.join(*(list(os.path.split(__file__))[:-1] + ['py2_template.py']))

[docs] def __init__(self, func=None, *, imports=None, global_values=None, copy_function_body=True,
 python2_path='python2'):
 """Make a function execute within a Python 2 instance

 :param func: The function to wrap. If not specified, this class instance behaves like a decorator
 :param imports: Any import statements the function requires. Should be a list, where each element is either a
 string (e.g., ``'sys'`` for ``import sys``)
 or a tuple (e.g., ``('os.path', 'path')`` for ``import os.path as pas``)
 :param global_values: A dictionary of global variables the function relies on. Key must be strings, and values
 must be picklable
 :param copy_function_body: Whether or not to copy the function's source code into the Python 2 instance
 :param python2_path: The path to the Python 2 executable to use
 """
 self.imports = imports or []
 self.globals = global_values or {}
 self.copy_function_body = copy_function_body
 self.python2_path = python2_path
 self.proc = None

 if isinstance(self.imports, dict):
 self.imports = list(self.imports.items())
 for i, imp in enumerate(self.imports):
 if isinstance(imp, str):
 self.imports[i] = (imp,)
 elif isinstance(imp, (tuple, list)):
 if len(imp) not in [1, 2]:
 raise ValueError("Imports must be given as 'name', ('name',), or ('pkg', 'name')")
 if not all(isinstance(n, str) and _re_module_name.match(n) for n in imp):
 raise ValueError("Invalid import name: 'import {}{}'"
 .format(imp[0], 'as {}'.format(imp[1]) if len(imp) == 2 else ''))

 for k in self.globals.keys():
 if not isinstance(k, str):
 raise ValueError("Global variables must be given as {'name': value}")
 elif not _re_var_name.match(k):
 raise ValueError("Invalid variable name given: '{}'".format(k))

 if func:
 self(func)

 def _write_pkl(self, obj):
 data = pickle.dumps(obj, protocol=MakePython2.pickle_protocol)
 self.proc.stdin.write(struct.pack('@I', len(data)))
 self.proc.stdin.write(data)
 self.proc.stdin.flush()

 def _read_pkl(self):
 outp_length = int(struct.unpack('@I', self.proc.stdout.read(4))[0])
 return pickle.loads(self.proc.stdout.read(outp_length))

 def _wrapped_function(self, *args, **kwargs):
 self._write_pkl((args, kwargs))
 success, result = self._read_pkl()
 if success:
 return result
 else:
 raise RuntimeError(result)

 @property
 def function(self):
 return self._wrapped_function

 def __call__(self, func):
 if callable(func):
 function_code = textwrap.dedent(inspect.getsource(func)) if self.copy_function_body else ''
 function_code = '\n'.join(line for line in function_code.split('\n') if not line.startswith('@MakePython2'))
 function_name = func.__name__
 elif isinstance(func, str):
 function_code = ''
 function_name = func
 else:
 raise TypeError("MakePython2 must be given either a function or an expression string to execute")

 self.proc = sp.Popen([self.python2_path, MakePython2.template], executable=self.python2_path,
 stdin=sp.PIPE, stdout=sp.PIPE)
 self._write_pkl((self.imports, self.globals, function_name, function_code))

 return self._wrapped_function

 def __del__(self):
 if self.proc:
 self._write_pkl(None)
 self.proc.stdin.close()
 self.proc.stdout.close()
 self.proc.terminate()
 self.proc.wait()

 Source code for miniutils.timing

import traceback
from functools import partial
from time import time

from miniutils.logs_base import log

[docs]def timed_call(func, *args, log_level='DEBUG', **kwargs):
 """Logs a function's run time

 :param func: The function to run
 :param args: The args to pass to the function
 :param kwargs: The keyword args to pass to the function
 :param log_level: The log level at which to print the run time
 :return: The function's return value
 """
 start = time()
 r = func(*args, **kwargs)
 t = time() - start
 log(log_level, "Call to '{}' took {:0.6f}s".format(func.__name__, t))
 return r

[docs]def make_timed(func):
 """A decorator to make a function print its execution time whenever it gets called"""
 return partial(timed_call, func)

[docs]def tic(log_level='DEBUG', fmt="{file}:{line} - {message} - {diff:0.6f}s (total={total:0.1f}s)", verbose=True):
 """A minimalistic ``printf``-type timing utility. Call this function to start timing individual sections of code

 :param log_level: The level at which to log block run times
 :param fmt: The format string to use when logging times. Available arguments include:

 - file, line, func, code_text: The stack frame information which called this timer
 - diff: The time since the last timer printout was called
 - total: The time since this timing block was started
 - message: The message passed to this timing printout
 :param verbose: If False, suppress printing messages
 :return: A function that reports run times when called
 """
 first_time = last_time = time()

 def toc(message=None):
 """A function that reports run times

 :param message: The message to print with this particular runtime
 :return: The time difference (in seconds) since the last tic or toc
 """
 nonlocal last_time

 now = time()
 diff = now - last_time
 total = now - first_time

 if verbose:
 file, line, func, code_text = traceback.extract_stack(limit=2)[0]
 log(log_level, fmt.format(**locals()))

 last_time = time()
 return diff

 return toc

 Source code for miniutils.caching.file_call

import os
import shelve
from collections import namedtuple
from functools import wraps
from glob import glob

from miniutils.opt_decorator import optional_argument_decorator
from miniutils.logs_base import debug

[docs]class FileCached:
 def __init__(self, fn, cache_path=None, files_used=None, auto_purge=False):
 """Caches function results to a file to save re-computation of highly expensive calls

 :param fn: The functions whose result should be cached
 :type fn: function
 :param cache_path: No-extension file path where cache should be kept
 :type cache_path: str
 :param files_used: List of files that could effect the result of this function; cache results are invalidated if any of these files are updated since the last function call
 :type files_used: Iterable
 :param auto_purge: If True, deletes the file cache when this cache object passes out of scope
 :type: auto_purge: bool
 """
 self.__wrapped__ = fn
 self.path = cache_path or '.__cache_{}'.format(fn.__name__)
 self.files_used = tuple(sorted([os.path.abspath(os.path.expanduser(p)) for p in (files_used or [])]))
 self._shelf = shelve.open(self.path)
 self._auto_purge = auto_purge
 self._hits = 0
 self._misses = 0

 def __call__(self, *args, **kwargs):
 key = ':'.join(self.files_used) + ':' + hex(hash((args, tuple(sorted(kwargs.items())))))

 if key in self._shelf:
 file_update_times, result = self._shelf[key]
 for file in self.files_used:
 if not os.path.exists(file) or os.path.getmtime(file) > file_update_times[file]:
 break
 else:
 self._hits += 1
 return result

 self._misses += 1
 file_update_times = {file: os.path.getmtime(file) for file in self.files_used}
 result = self.__wrapped__(*args, **kwargs)

 self._shelf[key] = (file_update_times, result)

 return result

 def __del__(self):
 if self._auto_purge:
 self.cache_clear(create_new_shelf=False)

[docs] def cache_clear(self, create_new_shelf=True):
 """Deletes the underlying cache"""
 # TODO: Remove these debug loops
 debug("Clearing shelf: directory starts with the following files:")
 for path in glob(os.path.dirname(self.path)):
 debug(path)

 del self._shelf
 for path in glob(self.path + '*'):
 os.remove(path)

 debug("Clearing shelf: directory ends with the following files:")
 for path in glob(os.path.dirname(self.path)):
 debug(path)

 if create_new_shelf:
 self._shelf = shelve.open(self.path)

[docs] def cache_info(self):
 """Gets information about this cache.

 :return: A named tuple containing the number of cache ``hits`` and ``misses``
 """
 return namedtuple('CacheInfo', ('hits', 'misses'))(self._hits, self._misses)

[docs]@optional_argument_decorator
def file_cached_decorator(*args, **kwargs):
 """A decorator version of ``FileCached``

 :param cache_path: No-extension file path where cache should be kept
 :type cache_path: str
 :param files_used: List of files that could effect the result of this function; cache results are invalidated if any of these files are updated since the last function call
 :type files_used: Iterable
 :param auto_purge: If True, deletes the file cache when this cache object passes out of scope
 :type: auto_purge: bool
 :return: A decorator for a function
 :rtype: function
 """

 @wraps(FileCached.__init__)
 def decorator(fn):
 """
 :rtype: FileCached
 """
 return FileCached(fn, *args, **kwargs)

 return decorator

 Source code for miniutils.caching.indexable

import functools
from functools import partial

class _LazyDictionary:
 def __init__(self, getter_closure, on_modified, settable=False, values=None):
 self._known = dict(values or {})
 self._cache = {}
 self._key_errors = {}
 self._closure = getter_closure
 self._on_modified = on_modified
 self.settable = settable

 def __getitem__(self, item):
 if item in self._known:
 return self._known[item]

 if item in self._key_errors:
 raise KeyError(*self._key_errors[item])

 if item not in self._cache:
 try:
 self._cache[item] = self._closure(item)
 except KeyError as e:
 self._key_errors[item] = e.args
 raise e

 return self._cache[item]

 def __setitem__(self, key, value):
 if not self.settable:
 raise AttributeError("{} is not settable".format(self))
 self._known[key] = value
 if key in self._cache and self._cache[key] is not value:
 self._on_modified()

 def __delitem__(self, key):
 if key in self._known:
 del self._known[key]
 if key in self._cache: # Not elif, we want to purge all knowledge about this key
 del self._cache[key]
 if key in self._key_errors:
 del self._key_errors[key]
 self._on_modified()

 @property
 def __doc__(self):
 return self._closure.__doc__

 def get(self, key, default):
 try:
 return self[key]
 except KeyError:
 return default

 def update(self, new_values):
 if not self.settable:
 raise AttributeError("{} is not settable".format(self))
 self._known.update(new_values)
 self._on_modified()

[docs]class LazyDictionary:
 caches = []

 def __init__(self, *affects, allow_collection_mutation=False):
 """Marks this indexable property to be a cached dictionary. Delete this property to remove the cached value and force it to be rerun.

 :param affects: Strings that list the names of the other properties in this class that are directly invalidated
 when this property's value is altered
 :param allow_collection_mutation: Whether or not the returned collection should allow its values to be altered
 """
 self.affected_properties = affects
 self.allow_mutation = allow_collection_mutation

 def __call__(self, f, name=None):
 self.f = f
 self.name = name = name or f.__name__
 cache_name = '_' + name

 def reset_dependents(inner_self):
 for affected in self.affected_properties:
 delattr(inner_self, affected)

 @functools.wraps(f)
 def inner_getter(inner_self):
 if not hasattr(inner_self, cache_name):
 new_indexable = _LazyDictionary(functools.wraps(f)(partial(f, inner_self)),
 partial(reset_dependents, inner_self),
 self.allow_mutation)
 setattr(inner_self, cache_name, new_indexable)
 return getattr(inner_self, cache_name)

 def inner_deleter(inner_self):
 if hasattr(inner_self, cache_name):
 delattr(inner_self, cache_name)
 # If we make this recursion conditional on the cache existing, we prevent dependency cycles from
 # breaking the code
 reset_dependents(inner_self)

 return property(fget=inner_getter, fdel=inner_deleter, doc=self.f.__doc__)

 Source code for miniutils.caching.property

import functools
from threading import RLock

class CachedCollection:
 IGNORED_GETS = ['get', 'union', 'intersection', 'difference', 'copy', 'keys', 'values', 'items']

 def __init__(self, value, on_update, container_self, allow_update):
 self.collection = value
 self.on_update = lambda: on_update(container_self)
 self.allow_update = allow_update

 def __getitem__(self, item):
 return self.collection[item]

 # def __missing__(self, key): # This isn't a dict subclass, it's a wrapper, so this method will never get called
 # if not self.allow_update:
 # raise AttributeError("Attempted to perform an action (probably add) an unknown key")
 # self.collection.__missing__(key)
 # self.on_update()

 def __setitem__(self, key, value):
 if not self.allow_update:
 raise AttributeError("Attempted to set value in an immutable cached collection")
 self.collection[key] = value
 self.on_update()

 def __delitem__(self, key):
 if not self.allow_update:
 raise AttributeError("Attempted to delete item from an immutable cached collection")
 del self.collection[key]
 self.on_update()

 def __iter__(self):
 return iter(self.collection)

 def __reversed__(self):
 return reversed(self.collection)

 def __contains__(self, item):
 return item in self.collection

 def __len__(self):
 return len(self.collection)

 def __str__(self):
 return str(self.collection)

 def __repr__(self):
 return "<Cached {}>".format(repr(self.collection))

 def __getattr__(self, item):
 res = getattr(self.collection, item)

 # TODO: make this more robust somehow... but how without deep copy and equality compare?
 # e.g., how to detect that dict().update changes its underlying data?
 # For now, manually annotate methods which are incapable of changing underlying data, and assume all others do
 if item in self.IGNORED_GETS:
 return res
 else:
 @functools.wraps(res)
 def wrapped_res(*args, **kwargs):
 if not self.allow_update:
 raise AttributeError("Attempted to modify an immutable cached collection (in call to {})"
 .format(res.__name__))
 r = res(*args, **kwargs)
 self.on_update()
 return r

 return wrapped_res

[docs]class CachedProperty:
 caches = []

[docs] def __init__(self, *affects, settable=False, threadsafe=True, is_collection=False, allow_collection_mutation=True):
 """Marks this property to be cached. Delete this property to remove the cached value and force it to be rerun.

 :param affects: Strings that list the names of the other properties in this class that are directly invalidated
 when this property's value is altered
 :param settable: Whether or not to allow this property to have values assigned directly to it
 :param threadsafe: Whether or not to restrict execution of this property's code to a single thread at a time
 (safe for recursive calls)
 :param is_collection: Whether or not this property returns a collection (currently supports lists, sets, and
 dictionaries; others might not work exactly as expected)
 :param allow_collection_mutation: Whether or not the returned collection should allow its values to be altered
 """
 self.affected_properties = affects
 self.settable = settable
 self.threadsafe = threadsafe
 self.is_collection = is_collection
 self.allow_collection_mutation = allow_collection_mutation
 self.name = '???'
 self.f = None
 CachedProperty.caches.append(self)

 def __call__(self, f, name=None):
 self.f = f
 self.name = name = name or f.__name__
 flag_name = '_need_' + name
 cache_name = '_' + name

 def reset_dependents(inner_self):
 for affected in self.affected_properties:
 delattr(inner_self, affected)

 if self.is_collection:
 orig_f = f

 @functools.wraps(orig_f)
 def f(inner_self):
 return CachedCollection(orig_f(inner_self), reset_dependents, inner_self,
 self.allow_collection_mutation)

 if self.threadsafe:
 lock_name = '_lock_' + name

 @functools.wraps(f)
 def inner_getter(inner_self):
 if not hasattr(inner_self, lock_name):
 setattr(inner_self, lock_name, RLock())
 with getattr(inner_self, lock_name):
 if getattr(inner_self, flag_name, True):
 setattr(inner_self, cache_name, f(inner_self))
 setattr(inner_self, flag_name, False)
 return getattr(inner_self, cache_name)

 else:
 @functools.wraps(f)
 def inner_getter(inner_self):
 if getattr(inner_self, flag_name, True):
 setattr(inner_self, cache_name, f(inner_self))
 setattr(inner_self, flag_name, False)
 return getattr(inner_self, cache_name)

 def inner_deleter(inner_self):
 # assert not getattr(inner_self, flag_name, True) or hasattr(inner_self, cache_name)
 # raise AttributeError("{} does not have a value for attribute {}".format(inner_self, name))
 setattr(inner_self, flag_name, True)
 if hasattr(inner_self, cache_name):
 delattr(inner_self, cache_name)
 # If we make this recursion conditional on the cache existing, we prevent dependency cycles from
 # breaking the code
 reset_dependents(inner_self)

 if not self.settable:
 return property(fget=inner_getter, fdel=inner_deleter, doc=self.f.__doc__)
 else:
 # TODO: allow custom setter (preferably using the property.setter decorator)
 def inner_setter(inner_self, value):
 if self.is_collection:
 setattr(inner_self, cache_name, CachedCollection(value, reset_dependents, inner_self,
 self.allow_collection_mutation))
 else:
 setattr(inner_self, cache_name, value)
 setattr(inner_self, flag_name, False)
 reset_dependents(inner_self)

 return property(fget=inner_getter, fset=inner_setter, fdel=inner_deleter, doc=self.f.__doc__)

 _static/plus.png

_static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to miniutils’s documentation!

 		
 Progress Bars

 		
 progbar

 		
 parallel_progbar

 		
 iparallel_progbar

 		
 Property Cache

 		
 Basic Property

 		
 Indexed Property

 		
 File-backed Function Cache

 		
 Nesting Python 2

 		
 Miscellaneous

 		
 Code Contracts

 		
 Simplifying Decorators

 		
 Logging Made Easy

 		
 Usage

 		
 Colored Logging

 		
 Timing

 		
 Timing Functions

 		
 Timing Blocks

 		
 API

 		
 Caching

 		
 Progress Bar

 		
 Python 2

 		
 Pragma

 		
 Miscellaneous

 		
 Magic Contracting

 		
 Simplifying Decorators

 		
 Logging

 		
 Timing

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

